User Type Identification in Virtual Worlds

In this chapter we have presented an efiective approach for identification of user types in virtual worlds. Two types of input features were discussed, action-based features and item-based features. The former type uses the information on the frequency of each type of action that each user performed. The latter one uses the information on the frequency of each type of item that each user acquired. AMBR, adopted as the classifier, could successfully identify the type of unknown user agents. In addition, it could give higher performance with the item-based features. In future work, we plan to conduct experiments using agents with more complicated behaviors and to investigate use of order information in either action sequences or item sequences. Eventually, we will apply our findings to real user data.