Identification of coupled map lattice models of deterministic distributed parameter systems

This paper introduces a novel approach to the identification of Coupled Map Lattice (CML) models of linear and nonlinear infinite-dimensional systems from discrete observations. The method exploits the regularity of the CML model so that only a finite number of spatial measurements are required. The measurement system associated with a CML is discussed and some necessary conditions for the input/output equations to form a CML are presented. Numerical simulations illustrate the applicability of the proposed method.

[1]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[2]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[3]  Choe,et al.  Spatiotemporal dynamics of domain-wall solitons in the fully frustrated Josephson-junction ladder arrays. , 1996, Physical review. B, Condensed matter.

[4]  Kenju Otsuka Complex Dynamics in Coupled Nonlinear Element Systems , 1991 .

[5]  Sheng Chen,et al.  Identification of non-linear rational systems using a prediction-error estimation algorithm , 1989 .

[6]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[7]  M. A. Erickson,et al.  Calculating Finite-Dimensional Approximations of Infinite-Dimensional Linear Systems , 1992, 1992 American Control Conference.

[8]  Stephen A. Billings,et al.  Identification of finite dimensional models of infinite dimensional dynamical systems , 2002, Autom..

[9]  Ricard V. Solé,et al.  Spiral waves, chaos and multiple attractors in lattice models of interacting populations , 1992 .

[10]  K. Kaneko Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency , 1989 .

[11]  Li Jiachun,et al.  Convective coupled map for simulating spatiotemporal chaos in flows , 1995 .

[12]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[13]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[14]  N. Platt,et al.  Pattern formation in driven coupled map lattices , 1997 .

[15]  S. Yoshizawa,et al.  Bistable Transmission Lines , 1965 .

[16]  J Jalife,et al.  Excitation, Conduction, and Reflection Impulses in Isolated Bovine and Canine Cardiac Purkinje Fibers , 1981, Circulation research.

[17]  J. Bell,et al.  Study of propagation along nonuniform excitable fibers. , 1994, Mathematical biosciences.

[18]  S. Billings,et al.  DISCRETE WAVELET MODELS FOR IDENTIFICATION AND QUALITATIVE ANALYSIS OF CHAOTIC SYSTEMS , 1999 .

[19]  James P. Keener,et al.  A mathematical model for the vulnerable phase in myocardium , 1988 .

[20]  Tatsuo Yanagita,et al.  Phenomenology of boiling: A coupled map lattice model. , 1992, Chaos.

[21]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[22]  金子 邦彦 Turbulence in Coupled Map Lattices , 1986 .

[23]  K. Kaneko Spatiotemporal Intermittency in Coupled Map Lattices , 1985 .

[24]  Thomas Erneux,et al.  Experimental and numerical study of weakly coupled bistable chemical reactors , 1994 .

[25]  James P. Crutchfield,et al.  Phenomenology of Spatio-Temporal Chaos , 1987 .

[26]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[27]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[28]  Sheng Chen,et al.  Non-linear systems identification using radial basis functions , 1990 .