Analysis of Trajectory Ontology Inference Complexity over Domain and Temporal Rules

Capture devices rise large scale trajectory data from moving objects. These devices use different technologies like global navigation satellite system (GNSS), wireless communication, radio-frequency identification (RFID), and other sensors. Huge trajectory data are available today. In this paper, we use an ontological data modeling approach to build a trajectory ontology from such large data. This ontology contains temporal concepts, so we map it to a temporal ontology. We present an implementation framework for declarative and imperative parts of ontology rules in a semantic data store. An inference mechanism is computed over these semantic data. The computational time and memory of the inference increases very rapidly as a function of the data size. For this reason, we propose a two-tier inference filters on data. The primary filter analyzes the trajectory data considering all the possible domain constraints. The analyzed data are considered as the first knowledge base. The secondary filter then computes the inference over the filtered trajectory data and yields to the final knowledge base, that the user can query.

[1]  Stefano Spaccapietra,et al.  A Hybrid Model and Computing Platform for Spatio-semantic Trajectories , 2010, ESWC.

[2]  Heiner Stuckenschmidt,et al.  Probabilistic Extensions of Semantic Web Languages - A Survey , 2008 .

[3]  Alon Y. Halevy,et al.  Structures, Semantics and Statistics , 2004, VLDB.

[4]  Jerry R. Hobbs,et al.  An ontology of time for the semantic web , 2004, TALIP.

[5]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[6]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[7]  Alain Bouju,et al.  Temporal reasoning in trajectories using an ontological modelling approach , 2012 .

[8]  Ahmed Lbath,et al.  Moving Object Trajectories Meta-Model And Spatio-Temporal Queries , 2012, ArXiv.

[9]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[10]  Michael A. Fedak,et al.  TWO APPROACHES TO COMPRESSING AND INTERPRETING TIME‐DEPTH INFORMATION AS AS COLLECTED BY TIME‐DEPTH RECORDERS AND SATELLITE‐LINKED DATA RECORDERS , 2001 .

[11]  Sven Hartmann,et al.  Advances in Conceptual Modeling – Challenges and Opportunities , 2008, Lecture Notes in Computer Science.

[12]  Alain Bouju,et al.  Une approche ontologique pour la modélisation et le raisonnement sur les trajectoires. Prise en compte des règles métiers, spatiales et temporelles , 2012, Tech. Sci. Informatiques.

[13]  Amit P. Sheth,et al.  A framework to support spatial, temporal and thematic analytics over semantic web data , 2008 .

[14]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[15]  Jean-Yves Lafaye,et al.  MDE for Publishing Data on the Semantic Web , 2008, TWOMDE@MoDELS.

[16]  Abdelmalek Amine,et al.  Modeling Approaches and Algorithms for Advanced Computer Applications , 2013, Studies in Computational Intelligence.

[17]  Miriam Baglioni,et al.  An Ontology-Based Approach for the Semantic Modelling and Reasoning on Trajectories , 2008, ER Workshops.

[18]  Alain Bouju,et al.  Modelling Mobile Object Activities Based on Trajectory Ontology Rules Considering Spatial Relationship Rules , 2013, Modeling Approaches and Algorithms for Advanced Computer Applications.

[19]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[20]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[21]  Alain Bouju,et al.  Time Integration in Semantic Trajectories Using an Ontological Modelling Approach , 2012, ADBIS Workshops.