MicroRNAs: novel therapeutic targets in neurodegenerative diseases.

[1]  Henry Yang,et al.  MicroRNA-125b Promotes Neuronal Differentiation in Human Cells by Repressing Multiple Targets , 2009, Molecular and Cellular Biology.

[2]  Carlo M. Croce,et al.  Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation* , 2009, The Journal of Biological Chemistry.

[3]  S. Hébert,et al.  Alterations of the microRNA network cause neurodegenerative disease , 2009, Trends in Neurosciences.

[4]  V. Scaria,et al.  Antagomirzymes: oligonucleotide enzymes that specifically silence microRNA function. , 2009, Angewandte Chemie.

[5]  J. Bertino,et al.  MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. , 2009, Pharmacogenomics.

[6]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[7]  V. Scaria,et al.  Human cellular microRNA hsa-miR-29a interferes with viral nef protein expression and HIV-1 replication , 2008, Retrovirology.

[8]  S. Booth,et al.  A miRNA Signature of Prion Induced Neurodegeneration , 2008, PloS one.

[9]  Christina Thaller,et al.  miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis , 2008, Nature Neuroscience.

[10]  A. Delacourte,et al.  Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression , 2008, Proceedings of the National Academy of Sciences.

[11]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[12]  O. Hobert Gene Regulation by Transcription Factors and MicroRNAs , 2008, Science.

[13]  Elena Cattaneo,et al.  A microRNA-based gene dysregulation pathway in Huntington's disease , 2008, Neurobiology of Disease.

[14]  Gaofeng Wang,et al.  Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. , 2008, American journal of human genetics.

[15]  Guiliang Tang,et al.  The Expression of MicroRNA miR-107 Decreases Early in Alzheimer's Disease and May Accelerate Disease Progression through Regulation of β-Site Amyloid Precursor Protein-Cleaving Enzyme 1 , 2008, The Journal of Neuroscience.

[16]  E. Izaurralde,et al.  Getting to the Root of miRNA-Mediated Gene Silencing , 2008, Cell.

[17]  Yi-Hsuan Chen,et al.  miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes , 2007, Nucleic Acids Res..

[18]  Aibin He,et al.  Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. , 2007, Molecular endocrinology.

[19]  G. Hannon,et al.  A MicroRNA Feedback Circuit in Midbrain Dopamine Neurons , 2007, Science.

[20]  H. Paulson,et al.  Technology Insight: therapeutic RNA interference—how far from the neurology clinic? , 2007, Nature Clinical Practice Neurology.

[21]  Yu Liang,et al.  BMC Genomics , 2007 .

[22]  F. Tang,et al.  Maternal microRNAs are essential for mouse zygotic development. , 2007, Genes & development.

[23]  R. Terns,et al.  Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs , 2007, Nature Reviews Molecular Cell Biology.

[24]  Joel S Parker,et al.  microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder , 2007, Genome Biology.

[25]  W. Lukiw,et al.  Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus , 2007, Neuroreport.

[26]  Mark M Perry,et al.  Maternally imprinted microRNAs are differentially expressed during mouse and human lung development , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[27]  N. Bonini,et al.  A New Role for MicroRNA Pathways: Modulation of Degeneration Induced by Pathogenic Human Disease Proteins , 2006, Cell cycle.

[28]  P. Lansbury,et al.  A century-old debate on protein aggregation and neurodegeneration enters the clinic , 2006, Nature.

[29]  N. Bonini,et al.  MicroRNA pathways modulate polyglutamine-induced neurodegeneration. , 2006, Molecular cell.

[30]  E. Wiemer,et al.  miRNAs and cancer , 2006, Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research.

[31]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[32]  S. Kauppinen,et al.  LNA-modified oligonucleotides mediate specific inhibition of microRNA function. , 2006, Gene.

[33]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[34]  Olga Varlamova,et al.  A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[36]  H. Paulson,et al.  RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[38]  S. Brahmachari,et al.  Identification of a novel 45 repeat unstable allele associated with a disease phenotype at the MJD1/SCA3 locus , 2005, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[39]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[40]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[41]  H. Paulson,et al.  RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia , 2004, Nature Medicine.

[42]  C. Ross,et al.  Protein aggregation and neurodegenerative disease , 2004, Nature Medicine.

[43]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[44]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[45]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[46]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[47]  S. Prusiner,et al.  Shattuck lecture--neurodegenerative diseases and prions. , 2001, The New England journal of medicine.

[48]  E. Kandel,et al.  Prospects for neurology and psychiatry. , 2001, JAMA.

[49]  Jin-Wu Nam,et al.  miR-29 miRNAs activate p53 by targeting p85α and CDC42 , 2009, Nature Structural &Molecular Biology.

[50]  G. Nuovo,et al.  Experimental validation of miRNA targets. , 2008, Methods.

[51]  Samir K. Brahmachari,et al.  dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation , 2009, BMC Bioinformatics.

[52]  A. Roses,et al.  Identification of miRNA Changes in Alzheimer's Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways , 2008 .

[53]  H. Zoghbi,et al.  Trinucleotide repeats: mechanisms and pathophysiology. , 2000, Annual review of genomics and human genetics.