Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven Josephson Parametric Amplifiers

Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs, three of them exhibiting a hysteretic dependence of the resonant frequency versus the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices (dc-SQUID), which provide the JPA nonlinearity, for a finite screening parameter $\beta_\mathrm{L}\,{>}\,0$ and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.

[1]  M. Roukes,et al.  A low-noise series-array Josephson junction parametric amplifier , 1996 .

[2]  R. Barends,et al.  Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching , 2015, 1503.04364.

[3]  A. Zorin,et al.  Quantum dynamics in a camelback potential of a dc SQUID. , 2008, Physical review letters.

[4]  UK.,et al.  Magnetic field tuning of coplanar waveguide resonators , 2008, 0805.2818.

[5]  J. Clarke,et al.  Dispersive magnetometry with a quantum limited SQUID parametric amplifier , 2010, 1003.2466.

[6]  T Yamamoto,et al.  Displacement of Propagating Squeezed Microwave States. , 2016, Physical review letters.

[7]  E. Solano,et al.  Path entanglement of continuous-variable quantum microwaves. , 2012, Physical review letters.

[8]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[9]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[10]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .

[11]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[12]  B. Plourde,et al.  Transient Dynamics of a Superconducting Nonlinear Oscillator , 2015, 1504.06883.

[13]  B. Yurke,et al.  Performance of Cavity-Parametric Amplifiers, Employing Kerr Nonlinearites, in the Presence of Two-Photon Loss , 2006, Journal of Lightwave Technology.

[14]  A. Yariv,et al.  Quantum Fluctuations and Noise in Parametric Processes. I. , 1961 .

[15]  M. Mariantoni,et al.  Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography. , 2010, Physical review letters.

[16]  M. Devoret,et al.  Generating entangled microwave radiation over two transmission lines. , 2012, Physical review letters.

[17]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[18]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[19]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[20]  M. Devoret,et al.  Widely tunable, nondegenerate three-wave mixing microwave device operating near the quantum limit. , 2012, Physical review letters.

[21]  R. J. Schoelkopf,et al.  Phase-preserving amplification near the quantum limit with a Josephson ring modulator , 2009, Nature.

[22]  F Balestro,et al.  Evidence of two-dimensional macroscopic quantum tunneling of a current-biased dc SQUID. , 2003, Physical review letters.

[23]  E. Solano,et al.  Squeezing with a flux-driven Josephson parametric amplifier , 2013, 1307.7285.

[24]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[25]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[26]  E Knill,et al.  Quantum state tomography of an itinerant squeezed microwave field. , 2010, Physical review letters.

[27]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[28]  Waltraut Wustmann,et al.  Parametric resonance in tunable superconducting cavities , 2013, 1302.3484.

[29]  T. Duty,et al.  Tuning the field in a microwave resonator faster than the photon lifetime , 2008 .

[30]  S. Lloyd Enhanced Sensitivity of Photodetection via Quantum Illumination , 2008, Science.

[31]  G. J. Dolan,et al.  Offset masks for lift‐off photoprocessing , 1977 .

[32]  A. Marx,et al.  Loss mechanisms in superconducting thin film microwave resonators , 2015, 1510.05957.

[33]  M. Wallquist,et al.  Selective coupling of superconducting charge qubits mediated by a tunable stripline cavity , 2006, cond-mat/0608209.

[34]  John M. Martinis,et al.  Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits , 2014, 1407.4769.

[35]  K. Stannigel,et al.  Parametric amplification with weak-link nonlinearity in superconducting microresonators , 2009, 0906.2744.

[36]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[37]  C. Wilson,et al.  Characterization of a multimode coplanar waveguide parametric amplifier , 2014, 1409.8160.

[38]  Esteve,et al.  Thermal activation of a hysteretic dc superconducting quantum interference device from its different zero-voltage states. , 1992, Physical review. B, Condensed matter.

[39]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[40]  Mattan Kamon,et al.  FASTHENRY: a multipole-accelerated 3-D inductance extraction program , 1994 .

[41]  E. Solano,et al.  Quantum teleportation of propagating quantum microwaves , 2015, 1506.06701.

[42]  K. Semba,et al.  Principles and methods of quantum information technologies , 2016 .