Why Topological Data Analysis Detects Financial Bubbles?

We present a heuristic argument for the propensity of Topological Data Analysis (TDA) to detect early warning signals of critical transitions in financial time series. Our argument is based on the Log-Periodic Power Law Singularity (LPPLS) model, which characterizes financial bubbles as super-exponential growth (or decay) of an asset price superimposed with oscillations increasing in frequency and decreasing in amplitude when approaching a critical transition (tipping point). We show that whenever the LPPLS model is fitting with the data, TDA generates early warning signals. As an application, we illustrate this approach on a sample of positive and negative bubbles in the Bitcoin historical price.

[1]  Yuri A. Katz,et al.  Topological data analysis of noise: Uniform unimodal distributions , 2023, Commun. Nonlinear Sci. Numer. Simul..

[2]  P. Dlotko,et al.  Uncertainty, volatility and the persistence norms of financial time series , 2021, Expert Syst. Appl..

[3]  Ruiqiang Song,et al.  The 2020 global stock market crash: Endogenous or exogenous? , 2021, Physica A: Statistical Mechanics and its Applications.

[4]  D. F. Ahelegbey,et al.  Network based evidence of the financial impact of Covid-19 pandemic , 2021, International Review of Financial Analysis.

[5]  C. Bauch,et al.  Deep learning for early warning signals of tipping points , 2021, Proceedings of the National Academy of Sciences.

[6]  Yuri A. Katz,et al.  Topological Features of Multivariate Distributions: Dependency on the Covariance Matrix , 2021, Commun. Nonlinear Sci. Numer. Simul..

[7]  Ruiqiang Song,et al.  The ‘COVID’ crash of the 2020 U.S. Stock market , 2021, 2101.03625.

[8]  Yuri A. Katz,et al.  Time-Resolved Topological Data Analysis of Market Instabilities , 2020, Physica A: Statistical Mechanics and its Applications.

[9]  Pawel Dlotko,et al.  Financial ratios and stock returns reappraised through a topological data analysis lens , 2019, The European Journal of Finance.

[10]  F. Chamchod,et al.  Topological Data Analysis for Identifying Critical Transitions in Cryptocurrency Time Series , 2020, 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).

[11]  H. Takayasu,et al.  Segmentation of time series in up- and down-trends using the epsilon-tau procedure with application to USD/JPY foreign exchange market data , 2020, PloS one.

[12]  Murat Kantarcioglu,et al.  BitcoinHeist: Topological Data Analysis for Ransomware Detection on the Bitcoin Blockchain , 2019, ArXiv.

[13]  Yuhei Umeda,et al.  Topological Data Analysis for Arrhythmia Detection through Modular Neural Networks , 2019, Canadian AI.

[14]  Wei Zhu,et al.  Real-time prediction of Bitcoin bubble crashes , 2019, Physica A: Statistical Mechanics and its Applications.

[15]  Min Shu,et al.  Detection of Chinese stock market bubbles with LPPLS confidence indicator , 2019, Physica A: Statistical Mechanics and its Applications.

[16]  Yuri A. Katz,et al.  Topological Recognition of Critical Transitions in Time Series of Cryptocurrencies , 2018, Physica A: Statistical Mechanics and its Applications.

[17]  Didier Sornette,et al.  Diagnostics of rational expectation financial bubbles with stochastic mean-reverting termination times , 2009, New Facets of Economic Complexity in Modern Financial Markets.

[18]  2019 International Conference on Data Mining Workshops (ICDMW) , 2019 .

[19]  Rodrigo Rivera-Castro,et al.  Topological Data Analysis for Portfolio Management of Cryptocurrencies , 2019, 2019 International Conference on Data Mining Workshops (ICDMW).

[20]  Yulia R. Gel,et al.  Harnessing the power of topological data analysis to detect change points , 2019, Environmetrics.

[21]  Pawel Dlotko,et al.  Cyclicality, Periodicity and the Topology of Time Series , 2019, ArXiv.

[22]  L. Lee Bubbles , 2019, Industrial Organization.

[23]  Murat Kantarcioglu,et al.  Bitcoin Risk Modeling With Blockchain Graphs , 2018, Economics Letters.

[24]  Firas A. Khasawneh,et al.  Topological data analysis for true step detection in periodic piecewise constant signals , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Didier Sornette,et al.  Dissection of Bitcoin's Multiscale Bubble History , 2018 .

[26]  O. Sporns,et al.  Towards a new approach to reveal dynamical organization of the brain using topological data analysis , 2018, Nature Communications.

[27]  D. Sornette,et al.  Bubbles as Violations of Efficient Time-Scales , 2017 .

[28]  Marian Gidea,et al.  Topological Data Analysis of Financial Time Series: Landscapes of Crashes , 2017, 1703.04385.

[29]  Marian Gidea,et al.  Topology Data Analysis of Critical Transitions in Financial Networks , 2017, 1701.06081.

[30]  Pawel Dlotko,et al.  A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..

[31]  Eng-Tuck Cheah,et al.  Negative bubbles and shocks in cryptocurrency markets , 2016 .

[32]  Jose A. Perea Persistent homology of toroidal sliding window embeddings , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  D. Sornette,et al.  Micro-Foundation Using Percolation Theory of the Finite-Time Singular Behavior of the Crash Hazard Rate in a Class of Rational Expectation Bubbles , 2016 .

[34]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[35]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[36]  J. Zhang,et al.  International Journal of Modern Physics CPhase transition of iron doped MgO under highpressure by First-principles study , 2015 .

[37]  Mikael Vejdemo-Johansson,et al.  Automatic recognition and tagging of topologically different regimes in dynamical systems , 2013, ArXiv.

[38]  Erik Schlögl,et al.  Quantitative Finance , 2013 .

[39]  Jesse Berwald,et al.  Critical Transitions In a Model of a Genetic Regulatory System , 2013, ArXiv.

[40]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[41]  S. Carpenter,et al.  Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data , 2012, PloS one.

[42]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[43]  Wanfeng Yan,et al.  Diagnosis and prediction of rebounds in financial markets , 2012 .

[44]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[45]  Didier Sornette,et al.  Detection of Crashes and Rebounds in Major Equity Markets , 2011, 1108.0077.

[46]  T. Lenton Early warning of climate tipping points , 2011 .

[47]  钟琦,et al.  Nature Climate Change政策和市场关注要览 , 2011 .

[48]  P. Phillips,et al.  Dating the Timeline of Financial Bubbles During the Subprime Crisis , 2010 .

[49]  Jan Sieber,et al.  Climate tipping as a noisy bifurcation: a predictive technique , 2010, 1007.1376.

[50]  D. Challet,et al.  Prediction accuracy and sloppiness of log-periodic functions , 2010, 1006.2010.

[51]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[52]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[53]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[54]  Giorgio Parisi,et al.  Physica A: Statistical Mechanics and its Applications: Editorial note , 2005 .

[55]  J. Hołyst,et al.  LOG-PERIODIC OSCILLATIONS IN DEGREE DISTRIBUTIONS OF HIERARCHICAL SCALE-FREE NETWORKS ∗ , 2005, cond-mat/0503291.

[56]  Geometriae Dedicata,et al.  Geometriae Dedicata , 2003 .

[57]  D. Sornette WHY STOCK MARKETS CRASH , 2003 .

[58]  H. J. Mclaughlin,et al.  Learn , 2002 .

[59]  S. Odake,et al.  International Journal of Modern Physics B c ○ World Scientific Publishing Company Comments on the Deformed WN Algebra ∗ , 2001 .

[60]  Olivier Ledoit,et al.  CRASHES AS CRITICAL POINTS , 1998, cond-mat/9810071.

[61]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[62]  D. Sornette,et al.  Discrete Scaling in Earthquake Precursory Phenomena: Evidence in the Kobe Earthquake, Japan , 1996 .

[63]  P. Freund,et al.  DISCRETE SCALE INVARIANCE IN STOCK MARKETS BEFORE CRASHES , 1995, cond-mat/9509033.

[64]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[65]  M. Watson,et al.  Bubbles, Rational Expectations and Financial Markets , 1982 .

[66]  F. Takens Detecting strange attractors in turbulence , 1981 .

[67]  O. Blanchard,et al.  Speculative bubbles, crashes and rational expectations , 1979 .

[68]  Thomas J. Sargent,et al.  Quantitative Economics , 1938, Nature.

[69]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[70]  Economics Letters , 2022 .