A Jumping-Genes Paradigm for Optimizing Factory WLAN Network

In this paper, a jumping-genes paradigm is proposed for optimizing the wireless local area network for an integrated-circuit factory. Through the base station placement, not only the best quality of service of the network is guaranteed, but also the performance of the network can be a tradeoff with the number of allowable base stations. This provides a greater flexibility for the designer when the factory environment such as physical space, building structure, equipment, and cost are the significant parts of the overall design criteria. The main feature of this optimization scheme is its capacity to yield the extreme minmax solutions under a specific allowable design, power-loss threshold. It provides a much wider range of solutions for selection, which includes the ultimate low-cost design without sacrificing the performance or vice versa. The obtained results revealed from this study indicated that the jumping-genes paradigm is an effective and reliable methodology for this type of design problem

[1]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[2]  Lynn Helena Caporale Darwin in the genome : molecular strategies in biological evolution , 2003 .

[3]  Marco Conti,et al.  Runtime optimization of IEEE 802.11 wireless LANs performance , 2004, IEEE Transactions on Parallel and Distributed Systems.

[4]  T. Rappaport Characterization of UHF multipath radio channels in factory buildings , 1989 .

[5]  Carlos A. Coello Coello,et al.  A Micro-Genetic Algorithm for Multiobjective Optimization , 2001, EMO.

[6]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[7]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[8]  Edward C. Prem,et al.  Wireless Local Area Networks , 2008, Industrial Communication Systems.

[9]  Marco Conti,et al.  Optimization of Efficiency and Energy Consumption in p-Persistent CSMA-Based Wireless LANs , 2002, IEEE Trans. Mob. Comput..

[10]  J.-C. Chen,et al.  Optimization of propagation models for the radio performance evaluation of wireless local area network , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[11]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[14]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[15]  V. Walbot,et al.  UV-B damage amplified by transposons in maize , 1999, Nature.

[16]  Yanghee Choi,et al.  Optimization of AP placement and channel assignment in wireless LANs , 2002, 27th Annual IEEE Conference on Local Computer Networks, 2002. Proceedings. LCN 2002..

[17]  Antonio Alfredo Ferreira Loureiro,et al.  Optimal base station placement and fixed channel assignment applied to wireless local area network projects , 1999, IEEE International Conference on Networks. ICON '99 Proceedings (Cat. No.PR00243).

[18]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[19]  Sunghyun Choi,et al.  Analysis of IEEE 802.11e for QoS support in wireless LANs , 2003, IEEE Wireless Communications.

[20]  Benny Bing Wireless Local Area Networks: The New Wireless Revolution [Book Review] , 2003, IEEE Communications Magazine.

[21]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[22]  Kim-Fung Man,et al.  A Jumping Gene Algorithm for Multiobjective Resource Management in Wideband CDMA Systems , 2005, Comput. J..

[23]  Ann K. Ganesan Darwin in the Genome: Molecular Strategies in Biological Evolution , 2003 .

[24]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[25]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[26]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[27]  Greg Bear Darwin's Radio , 1999 .

[28]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[29]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[30]  Benny Bing,et al.  Wireless local area networks: the new wireless revolution , 2002 .

[31]  Kim-Fung Man,et al.  Wireless communication network design in IC factory , 2001, IEEE Trans. Ind. Electron..

[32]  Andrew P. Read The Dynamic Genome - Barbara McClintock's Ideas in the Century of Genetics , 1993 .

[33]  Jinyun Zhang,et al.  QoS enhancement in IEEE 802.11 wireless local area networks , 2003, IEEE Commun. Mag..

[34]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[35]  C. Coello,et al.  Multiobjective optimization using a micro-genetic algorithm , 2001 .

[36]  T.M. Chan,et al.  Jumping-genes in evolutionary computing , 2004, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004.