An Efficient Strategy for Bit-Quad-Based Euler Number Computing Algorithm

[1]  Hanan Samet,et al.  Computing Geometric Properties of Images Represented by Linear Quadtrees , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Malay Kumar Kundu,et al.  A fast algorithm for computing the Euler number of an image and its VLSI implementation , 2000, VLSI Design 2000. Wireless and Digital Imaging in the Millennium. Proceedings of 13th International Conference on VLSI Design.

[3]  Franco Chiavetta,et al.  Parallel computation of the Euler number via Connectivity Graph , 1993, Pattern Recognit. Lett..

[4]  Kenji Suzuki,et al.  An Algorithm for Connected-Component Labeling, Hole Labeling and Euler Number Computing , 2013, Journal of Computer Science and Technology.

[5]  Tim J. Ellis,et al.  Image Difference Threshold Strategies and Shadow Detection , 1995, BMVC.

[6]  C. A. Murthy,et al.  A pipeline architecture for computing the Euler number of a binary image , 2005, J. Syst. Archit..

[7]  L S Juan Diaz-de-Leon,et al.  On the computation of the Euler number of a binary object , 1996 .

[8]  C. Dyer Computing the Euler number of an image from its quadtree , 1980 .

[9]  Stephen B. Gray,et al.  Local Properties of Binary Images in Two Dimensions , 1971, IEEE Transactions on Computers.

[10]  Kenji Suzuki,et al.  An efficient first-scan method for label-equivalence-based labeling algorithms , 2010, Pattern Recognit. Lett..

[11]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[12]  Shree K. Nayar,et al.  Reflectance based object recognition , 1996, International Journal of Computer Vision.

[13]  Minghua Chen,et al.  A fast algorithm to calculate the Euler number for binary images , 1988, Pattern Recognit. Lett..