Robust algebraic Schur complement preconditioners based on low rank corrections
暂无分享,去创建一个
[1] Massimiliano Lucchesi,et al. Masonry Constructions: Mechanical Models and Numerical Applications , 2008 .
[2] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[3] Achi Brandt,et al. Bootstrap AMG , 2011, SIAM J. Sci. Comput..
[4] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[5] Frédéric Nataf,et al. Scalable domain decomposition preconditioners for heterogeneous elliptic problems , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
[6] Xiaoye S. Li,et al. Direction-Preserving and Schur-Monotonic Semiseparable Approximations of Symmetric Positive Definite Matrices , 2009, SIAM J. Matrix Anal. Appl..
[7] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[8] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[9] Hua Xiang,et al. A Coarse Space Construction Based on Local Dirichlet-to-Neumann Maps , 2011, SIAM J. Sci. Comput..
[10] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..