Robust algebraic Schur complement preconditioners based on low rank corrections

In this paper we introduce LORASC, a robust algebraic preconditioner for solving sparse linear systems of equations involving symmetric and positive definite matrices. The graph of the input matrix is partitioned by using k-way partitioning with vertex separators into N disjoint domains and a separator formed by the vertices connecting the N domains. The obtained permuted matrix has a block arrow structure. The preconditioner relies on the Cholesky factorization of the first N diagonal blocks and on approximating the Schur complement corresponding to the separator block. The approximation of the Schur complement involves the factorization of the last diagonal block and a low rank correction obtained by solving a generalized eigenvalue problem or a randomized algorithm. The preconditioner can be build and applied in parallel. Numerical results on a set of matrices arising from the discretization by the finite element method of linear elasticity models illustrate the robusteness and the efficiency of our preconditioner.