Targeted activation of human Vγ9Vδ2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease.

[1]  R. Ambinder,et al.  EBV-Related Lymphomas: New Approaches to Treatment , 2013, Current Treatment Options in Oncology.

[2]  Zheng Xiang,et al.  Human Vγ9Vδ2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells , 2013, Cellular and Molecular Immunology.

[3]  G. Laurent,et al.  What lessons can be learned from γδ T cell-based cancer immunotherapy trials? , 2012, Cellular and Molecular Immunology.

[4]  Y. Lau,et al.  γδ-T cells: an unpolished sword in human anti-infection immunity , 2012, Cellular and Molecular Immunology.

[5]  J. S. Malik Peiris,et al.  Phenotypic and functional characterization of human γδ T-cell subsets in response to influenza A viruses. , 2012, The Journal of infectious diseases.

[6]  G. Giovannoni,et al.  Association of innate immune activation with latent Epstein-Barr virus in active MS lesions , 2012, Neurology.

[7]  Y. Lau,et al.  Type 1 Responses of Human Vγ9Vδ2 T Cells to Influenza A Viruses , 2011, Journal of Virology.

[8]  J. Peiris,et al.  The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a γδ T cell population in humanized mice , 2011, The Journal of experimental medicine.

[9]  A. Rickinson,et al.  Immune defence against EBV and EBV-associated disease. , 2011, Current opinion in immunology.

[10]  M. Gulley,et al.  A New Model of Epstein-Barr Virus Infection Reveals an Important Role for Early Lytic Viral Protein Expression in the Development of Lymphomas , 2010, Journal of Virology.

[11]  M. Bonneville,et al.  γδ T cell effector functions: a blend of innate programming and acquired plasticity , 2010, Nature Reviews Immunology.

[12]  R. Arceci,et al.  Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. , 2010, Blood.

[13]  J. Peiris,et al.  Phosphoantigen-Expanded Human γδ T Cells Display Potent Cytotoxicity against Monocyte-Derived Macrophages Infected with Human and Avian Influenza Viruses , 2009, The Journal of infectious diseases.

[14]  Chi Ma,et al.  The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. , 2009, Blood.

[15]  H. Heslop,et al.  Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. , 2009, Blood.

[16]  A. Chapoval,et al.  Isopentenyl Pyrophosphate–Activated CD56+ γδ T Lymphocytes Display Potent Antitumor Activity toward Human Squamous Cell Carcinoma , 2008, Clinical Cancer Research.

[17]  H. Oberg,et al.  Innate immune functions of human gammadelta T cells. , 2008, Immunobiology.

[18]  Dolca Thomas,et al.  Tonsilar NK Cells Restrict B Cell Transformation by the Epstein-Barr Virus via IFN-γ , 2008, PLoS pathogens.

[19]  R. Ambinder,et al.  Epstein-Barr virus-related lymphoproliferative disorders , 2007, Current hematologic malignancy reports.

[20]  C. Rooney,et al.  Improving T cell therapy for cancer. , 2007, Expert opinion on biological therapy.

[21]  L. Paša-Tolić,et al.  Preferential recognition of a microbial metabolite by human Vγ2Vδ2 T cells , 2007 .

[22]  G. Russ,et al.  Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. , 2007, Blood.

[23]  M. Bonneville,et al.  Human Vγ9Vδ2 T cells : promising new leads for immunotherapy of infections and tumors , 2006 .

[24]  W. Born,et al.  The function of γδ T cells in innate immunity , 2006 .

[25]  M. Bonneville,et al.  In Vivo Immunomanipulation of Vγ9Vδ2 T Cells with a Synthetic Phosphoantigen in a Preclinical Nonhuman Primate Model , 2005, The Journal of Immunology.

[26]  Maria Kotsiopriftis,et al.  Heat Shock Protein 90 Expression in Epstein-Barr Virus-Infected B Cells Promotes γδ T-Cell Proliferation In Vitro , 2005, Journal of Virology.

[27]  R. Khanna,et al.  Technology Insight: applications of emerging immunotherapeutic strategies for Epstein–Barr virus-associated malignancies , 2005, Nature Clinical Practice Oncology.

[28]  S. Carding,et al.  γδ T cells: functional plasticity and heterogeneity , 2002, Nature Reviews Immunology.

[29]  Lisheng Wang,et al.  Vγ2Vδ2 T-cell receptor-mediated recognition of aminobisphosphonates , 2001 .

[30]  J. Cohen,et al.  Epstein-Barr virus infection. , 2000, The New England journal of medicine.

[31]  Richard E. Slaughter,et al.  Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Wilhelm,et al.  Gamma/delta T-cell stimulation by pamidronate. , 1999, The New England journal of medicine.

[33]  M. Ladanyi,et al.  Human Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes home preferentially to and induce selective regressions of autologous EBV- induced B cell lymphoproliferations in xenografted C.B-17 scid/scid mice [published erratum appears in J Exp Med 1996 Sep 1;184(3):1199] , 1996, The Journal of experimental medicine.

[34]  R. Krance,et al.  Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation , 1995, The Lancet.

[35]  G. Klein,et al.  Functional and molecular characterization of B cell‐responsive Vδ1+ γδ T cells , 1994 .

[36]  D. Longo,et al.  Inhibition of human B-cell lymphoma growth by CD40 stimulation. , 1994, Blood.

[37]  B. Burke,et al.  Epstein-Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. , 1988, Blood.

[38]  D. Kabelitz,et al.  Perspectives of gammadelta T cells in tumor immunology. , 2007, Cancer research.

[39]  R. Longnecker,et al.  Epstein-Barr virus (EBV) infection visualized by EGFP expression demonstrates dependence on known mediators of EBV entry , 1999, Archives of Virology.