Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review

Abstract Effective hydrogen storage solutions have been pursued for decades, and materials-based hydrogen storage is a research frontier of much current interest. Yet, no researched materials to date have come close to the DOE 2020 targets for hydrogen storage at ambient conditions, although some good results have been reported at cryogenic temperature. This paper critically reviews the current research trends and perspectives on materials-based hydrogen storage including both materials-based physical storage and materials-based chemical storage. In the case of physical storage, the efforts on exploring new porous materials with extra larger surface/pore volume, inducing hydrogen spillover effect, and tailoring reaction enthalpies are discussed. Meanwhile, for chemical storage, approaches to improve the kinetics and/or thermodynamics such as the development of composite hydride systems, nanoconfinement of hydride materials as well as the usage of ionic liquids as hydrogen storage materials or useful additives are discussed. Furthermore, the applied techniques on solid-state materials towards system integration such as shaping and electrospinning processes are introduced. Finally, the concept of storing hydrogen in para form for long-term hydrogen storage is discussed, and a converter packed with catalysts to process the normal hydrogen to para-hydrogen is highlighted.

[1]  Young Ho Kim,et al.  The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage , 2008 .

[2]  M. Fichtner Properties of nanoscale metal hydrides , 2009, Nanotechnology.

[3]  A. I. Lichtenstein,et al.  Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations , 2007, 0710.1971.

[4]  Jun Chen,et al.  The enhanced hydrogen storage of micro-nanostructured hybrids of Mg(BH4)2-carbon nanotubes. , 2015, Nanoscale.

[5]  Ulrich Eberle,et al.  Hydrogen storage: the remaining scientific and technological challenges. , 2007, Physical Chemistry, Chemical Physics - PCCP.

[6]  Rapee Utke,et al.  LiBH4 nanoconfined in activated carbon nanofiber for reversible hydrogen storage , 2015 .

[7]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[8]  E. Ganz,et al.  Energetics and Thermodynamics of the Initial Stages of Hydrogen Storage by Spillover on Prototypical Metal–Organic Framework and Covalent–Organic Framework Materials , 2014 .

[9]  P. Jena Materials for Hydrogen Storage: Past, Present, and Future , 2011 .

[10]  Tsunehiro Tanaka,et al.  Development of palladium surface-enriched heteronuclear Au-Pd nanoparticle dehalogenation catalysts in an ionic liquid. , 2013, Chemistry.

[11]  K. Srinivasu,et al.  Computational investigation of hydrogen adsorption by alkali-metal-doped organic molecules: role of aromaticity. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Zaiping Guo,et al.  Guanidinium octahydrotriborate: an ionic liquid with high hydrogen storage capacity , 2015 .

[13]  U. Bünger,et al.  Adsorption hydrogen storage at cryogenic temperature – Material properties and hydrogen ortho-para conversion matters , 2015 .

[14]  George E. Froudakis,et al.  Fundamental studies and perceptions on the spillover mechanism for hydrogen storage. , 2011, Chemical communications.

[15]  Hyunseok Kim,et al.  Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes , 2006 .

[16]  Z. Lai,et al.  A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material. , 2015, Chemical communications.

[17]  M. Muhler,et al.  Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties. , 2014, Angewandte Chemie.

[18]  P. Annamalai,et al.  Electrospun MOF nanofibers as hydrogen storage media , 2015 .

[19]  Xiulin Fan,et al.  Low-Temperature Reversible Hydrogen Storage Properties of LiBH4: A Synergetic Effect of Nanoconfinement and Nanocatalysis , 2014 .

[20]  R. Ahluwalia,et al.  Enhanced dormancy due to para-to-ortho hydrogen conversion in insulated cryogenic pressure vessels for automotive applications , 2013 .

[21]  Seeram Ramakrishna,et al.  Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[22]  T. Hoang,et al.  Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials. , 2010, Journal of the American Chemical Society.

[23]  K. Gross,et al.  Catalyzed alanates for hydrogen storage , 2000 .

[24]  Alexandr V. Talyzin,et al.  Comment to the “Response to “Hydrogen adsorption in Pt catalyst/MOF-5 materials”” by Li et al. [1] , 2011 .

[25]  Li Wang,et al.  Hydrogen Storage in Metal-Organic Frameworks , 2012, Journal of Inorganic and Organometallic Polymers and Materials.

[26]  R. T. Yang,et al.  Hydrogen Storage on Carbon Doped with Platinum Nanoparticles Using Plasma Reduction , 2007 .

[27]  M. Latroche,et al.  Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids , 2013 .

[28]  D. M. Dennison A Note on the Specific Heat of the Hydrogen Molecule , 1927 .

[29]  Anthony J. Lachawiec,et al.  Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[30]  R. E. Del Sesto,et al.  Improved hydrogen release from ammonia-borane with ZIF-8. , 2012, Inorganic chemistry.

[31]  A. Singleton,et al.  TECHNICAL ASPECTS OF ORTHO-PARAHYDROGEN CONVERSION , 1964 .

[32]  T. Yildirim,et al.  Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .

[33]  Yong-Hyun Kim,et al.  Hydrogen storage in novel organometallic buckyballs. , 2005, Physical review letters.

[34]  Wei Hong,et al.  A controlled biochemical release device with embedded nanofluidic channels , 2012 .

[35]  Lixian Sun,et al.  Improved hydrogen desorption properties of ammonia borane by Ni-modified metal-organic frameworks , 2011 .

[36]  Joshua R. Smith,et al.  Para-H2 to ortho-H2 conversion in a full-scale automotive cryogenic pressurized hydrogen storage up to 345 bar , 2013 .

[37]  R. T. Yang,et al.  Catalyzed hydrogen spillover for hydrogen storage. , 2009, Journal of the American Chemical Society.

[38]  Joseph A. Rodgers,et al.  Liquid hydrogen fuel system design and demonstration in a small long endurance air vehicle , 2014 .

[39]  J. W. Leachmana Fundamental Equations of State for Parahydrogen , Normal Hydrogen , and Orthohydrogen , 2009 .

[40]  Qiang Xu,et al.  Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. , 2012, Journal of the American Chemical Society.

[41]  Jason Graetz,et al.  New approaches to hydrogen storage. , 2009, Chemical Society reviews.

[42]  A. B. Scott,et al.  The Conversion of Ortho- to Parahydrogen on Iron Oxide-Zinc Oxide Catalysts1 , 1957 .

[43]  Alexandr V. Talyzin,et al.  Hydrogen adsorption in Pt catalyst/MOF-5 materials , 2010 .

[44]  D. Canet,et al.  Electron Spin Polarization Transfer to ortho-H2 by Interaction of para-H2 with Paramagnetic Species: A Key to a Novel para → ortho Conversion Mechanism. , 2015, The journal of physical chemistry letters.

[45]  N. Knoblauch,et al.  Hydrogen storage in amine boranes: Ionic liquid supported thermal dehydrogenation of ethylene diamine bisborane , 2013 .

[46]  D. Gregory,et al.  Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design , 2012 .

[47]  E Stride,et al.  Electrospinning versus fibre production methods: from specifics to technological convergence. , 2012, Chemical Society reviews.

[48]  G. Borodi,et al.  On the enhancement of hydrogen uptake by IRMOF-8 composites with Pt/carbon catalyst , 2012 .

[49]  Robert Butterick,et al.  Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. , 2006, Journal of the American Chemical Society.

[50]  G. Kubas Molecular hydrogen complexes: coordination of a .sigma. bond to transition metals , 1988 .

[51]  R. Ahluwalia,et al.  Hydrogen release from ammonia borane dissolved in an ionic liquid , 2011 .

[52]  W. Ding,et al.  NaBH4 in “Graphene Wrapper:” Significantly Enhanced Hydrogen Storage Capacity and Regenerability through Nanoencapsulation , 2015, Advanced materials.

[53]  T. Hoang,et al.  Cyclopentadienyl chromium hydrazide gels for Kubas-type hydrogen storage. , 2010, Chemical communications.

[54]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[55]  Woon Ih Choi,et al.  Combinatorial search for optimal hydrogen-storage nanomaterials based on polymers. , 2006, Physical review letters.

[56]  Xinlu Cheng,et al.  The effect of ionization and CH3 ligand for hydrogen storage in Co‐ and Ni‐based organometallic compounds , 2011 .

[57]  D. Sheppard,et al.  Hydrogen storage properties of nanoconfined LiBH4–NaBH4 , 2015 .

[58]  K. Fukutani,et al.  Physisorption and ortho–para conversion of molecular hydrogen on solid surfaces , 2013 .

[59]  D. J. Durbin,et al.  Review of hydrogen storage techniques for on board vehicle applications , 2013 .

[60]  Enge Wang,et al.  Charged fullerenes as high-capacity hydrogen storage media. , 2007, Nano letters.

[61]  Mitsuru Matsumoto,et al.  Kinetics of the interconversion of parahydrogen and orthohydrogen catalyzed by paramagnetic complex ions. , 2005, Journal of the American Chemical Society.

[62]  Michael Hirscher,et al.  Hydrogen spillover measurements of unbridged and bridged metal-organic frameworks--revisited. , 2010, Physical chemistry chemical physics : PCCP.

[63]  Donald J. Siegel,et al.  Increased volumetric hydrogen uptake of MOF-5 by powder densification , 2012 .

[64]  R. T. Yang,et al.  New sorbents for hydrogen storage by hydrogen spillover – a review , 2008 .

[65]  R. Cataluña,et al.  Hydrogen-Storage Materials Based on Imidazolium Ionic Liquids , 2007 .

[66]  S. Kurko,et al.  Changes of hydrogen storage properties of MgH2 induced by boron ion irradiation , 2008 .

[67]  P. Shen,et al.  One-pot synthesis of Pd nanoparticles on ultrahigh surface area 3D porous carbon as hydrogen storage materials , 2014 .

[68]  Shahriar Shafiee,et al.  When will fossil fuel reserves be diminished , 2009 .

[69]  Notker Rösch,et al.  Methylguanidinium borohydride: an ionic-liquid-based hydrogen-storage material. , 2010, Angewandte Chemie.

[70]  Seung Jae Yang,et al.  Recent advances in hydrogen storage technologies based on nanoporous carbon materials , 2012 .

[71]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[72]  Donald J. Siegel,et al.  Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites , 2012 .

[73]  M. Fichtner Nanoconfinement effects in energy storage materials. , 2011, Physical chemistry chemical physics : PCCP.

[74]  Andreas Züttel,et al.  Stabilization of volatile Ti(BH4)3 by nano-confinement in a metal–organic framework† †Electronic supplementary information (ESI) available: Structural characterizations and fit parameters. See DOI: 10.1039/c5sc03517a Click here for additional data file. , 2015, Chemical science.

[75]  W. Zhou,et al.  LiBH4·NH3BH3: A new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties , 2012 .

[76]  G. Buntkowsky,et al.  Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion. , 2006, Physical chemistry chemical physics : PCCP.

[77]  I. Oh,et al.  Synthesis and characterization of Fe-modified zeolite for spin conversion of hydrogen at cryogenic temperature , 2015 .

[78]  R. T. Yang,et al.  Characteristics of hydrogen storage by spillover on Pt-doped carbon and catalyst-bridged metal organic framework. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[79]  Michael A. Miller,et al.  Hydrogen storage measurement, synthesis and characterization of metal–organic frameworks via bridged spillover , 2010 .

[80]  A. Tomaszewska,et al.  The influenced of the external electric field on the hydrogen-palladium system , 2007 .

[81]  Spillover of hydrogen on SiC-ML surface: Doping effect and bond exchange mechanism , 2016 .

[82]  Ulrich Eberle,et al.  Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.

[83]  Shiguo Zhang,et al.  Ionic liquids and their solid-state analogues as materials for energy generation and storage , 2016, Nature Reviews Materials.

[84]  Yanqiu Zhu,et al.  Porous carbon-based materials for hydrogen storage: advancement and challenges , 2013 .

[85]  Gabriele Centi,et al.  A perspective on carbon materials for future energy application , 2013 .

[86]  Bing Dai,et al.  Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction , 2009, Nanotechnology.

[87]  D. Sheppard,et al.  Hydrogen storage properties of nanoconfined LiBH4–Ca(BH4)2 , 2015 .

[88]  M. Groll,et al.  Expanded graphite as heat transfer matrix in metal hydride beds , 2003 .

[89]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[90]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[91]  Outlook and challenges for hydrogen storage in nanoporous materials , 2016 .

[92]  P. Ngene,et al.  Reversible Li-insertion in nanoscaffolds: A promising strategy to alter the hydrogen sorption properties of Li-based complex hydrides , 2016 .

[93]  W. Sambaer,et al.  3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process , 2011 .

[94]  Yituo Wang,et al.  Improvement of the LiBH4 hydrogen desorption by confinement in modified carbon nanotubes , 2015 .

[95]  H. Pan,et al.  Towards the endothermic dehydrogenation of nanoconfined magnesium borohydride ammoniate , 2015 .

[96]  T. Klassen,et al.  Synthesis of NaAlH4-based hydrogen storage material using milling under low pressure hydrogen atmosphere , 2007 .

[97]  Andreas Züttel,et al.  Materials for hydrogen storage , 2003 .

[98]  Q. Sun,et al.  Electric field enhanced hydrogen storage on polarizable materials substrates , 2010, Proceedings of the National Academy of Sciences.

[99]  M. Dresselhaus,et al.  Impact of nanostructuring on the enthalpy of formation of metal hydrides , 2008 .

[100]  M. Klein,et al.  Hydrogen evolution from formic acid in an ionic liquid solvent: a mechanistic study by ab initio molecular dynamics. , 2011, The journal of physical chemistry. B.

[101]  A. Ghoufi Nanoconfined gases, liquids and liquid crystals in porous materials , 2014 .

[102]  T. Welton Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. , 1999, Chemical reviews.

[103]  H. Fjellvåg,et al.  Nanostructures of LiBH4: a density-functional study. , 2009, Nanotechnology.

[104]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[105]  Kan Wang,et al.  Enhancement of hydrogen binding affinity with low ionization energy Li2F coating on C60 to improve hydrogen storage capacity , 2014 .

[106]  T. Hoang,et al.  Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials , 2009 .

[107]  D. Pukazhselvan,et al.  High capacity hydrogen storage: Basic aspects, new developments and milestones , 2012 .

[108]  T. Hoang,et al.  Transition metal hydrazide-based hydrogen-storage materials: the first atoms-in-molecules analysis of the Kubas interaction. , 2012, Chemistry.

[109]  Tamal Banerjee,et al.  Optimization and quantum chemical predictions for the dehydrogenation kinetics of Ammonia Borane–Ionic Liquid mixtures , 2015 .

[110]  Zaiping Guo,et al.  Nano-confined multi-synthesis of a Li–Mg–N–H nanocomposite towards low-temperature hydrogen storage with stable reversibility , 2015 .

[111]  Ulrich Eberle,et al.  Fuel cell vehicles: Status 2007 , 2007 .

[112]  G. Froudakis,et al.  Theoretical Explanation of Hydrogen Spillover in Metal−Organic Frameworks , 2011 .

[113]  Dmitri Bessarabov,et al.  Hydrogen storage in metal-organic frameworks: A review , 2014 .

[114]  Jooho Moon,et al.  Co-electrospun Pd-coated porous carbon nanofibers for hydrogen storage applications , 2011 .

[115]  Mary Anne White,et al.  Thermal properties of zeolites: effective thermal conductivity of dehydrated powdered zeolite 4A , 2002 .

[116]  G. Lu,et al.  Ammonia borane confined by a metal-organic framework for chemical hydrogen storage: enhancing kinetics and eliminating ammonia. , 2010, Journal of the American Chemical Society.

[117]  M. Prechtl,et al.  Hydrogen Storage Using Ionic Liquid Media , 2013 .

[118]  G. Kubas Metal–dihydrogen and σ-bond coordination: the consummate extension of the Dewar–Chatt–Duncanson model for metal–olefin π bonding , 2001 .

[119]  Kuen-Song Lin,et al.  Hydrogen adsorption in metal organic frameworks by hydrogen spillover , 2011 .

[120]  I. Oh,et al.  Spin conversion of hydrogen over LaFeO3/Al2O3 catalysts at low temperature: Synthesis, characterization and activity , 2015 .

[121]  G. Lu,et al.  Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon , 2008 .

[122]  R. Prins Hydrogen spillover. Facts and fiction. , 2012, Chemical reviews.

[123]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[124]  F. Peeters,et al.  The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene. , 2011, Physical chemistry chemical physics : PCCP.

[125]  Havva Balat,et al.  Recent trends in global production and utilization of bio-ethanol fuel , 2009 .

[126]  G. E. Kinard The commercial use of liquid hydrogen over the last 40 years , 1998 .

[127]  Jena,et al.  Interaction of H2 and He with metal atoms, clusters, and ions. , 1995, Physical review. B, Condensed matter.

[128]  S. Kitagawa,et al.  Coordination nano-space as stage of hydrogen ortho–para conversion , 2015, Royal Society Open Science.

[129]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[130]  Ned Stetson,et al.  Materials-based hydrogen storage: Attributes for near-term, early market PEM fuel cells , 2011 .

[131]  Buyin Li,et al.  Catalyzed hydrogen spillover for hydrogen storage on microporous organic polymers , 2012 .

[132]  R. T. Yang,et al.  Investigation on Hydrogenation of Metal–Organic Frameworks HKUST-1, MIL-53, and ZIF-8 by Hydrogen Spillover , 2013 .

[133]  Roger E. Miller,et al.  Rotationally resolved infrared laser spectroscopy of (H2)n-HF and (D2)n-HF (n = 2-6) in helium nanodroplets , 2004 .

[134]  A. McGaughey,et al.  Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations , 2007 .

[135]  N. Matubayasi,et al.  Controlling the equilibrium of formic acid with hydrogen and carbon dioxide using ionic liquid. , 2010, The journal of physical chemistry. A.

[136]  Xiulin Fan,et al.  Enhanced hydrogen storage capacity and reversibility of LiBH4 nanoconfined in the densified zeolite-templated carbon with high mechanical stability , 2015 .

[137]  Rapee Utke,et al.  Ternary LiBH4–MgH2–NaAlH4 hydride confined into nanoporous carbon host for reversible hydrogen storage , 2016 .

[138]  Zhengxiao Guo,et al.  Transition-metal-doping-enhanced hydrogen storage in boron nitride systems , 2006 .

[139]  T. Baumann,et al.  Toward New Candidates for Hydrogen Storage: High-Surface-Area Carbon Aerogels , 2006 .

[140]  D. Antonelli,et al.  Computational study of silica-supported transition metal fragments for Kubas-type hydrogen storage. , 2010, Journal of the American Chemical Society.

[141]  H. Pan,et al.  Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH4 with the Ti-incorporated metal organic framework MIL-125(Ti) , 2014 .

[142]  J. Tour,et al.  Green carbon as a bridge to renewable energy. , 2010, Nature materials.

[143]  Seung Jae Yang,et al.  Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites , 2010 .

[144]  Xin Hu,et al.  Hydrogen storage in chemically reducible mesoporous and microporous Ti oxides. , 2006, Journal of the American Chemical Society.

[145]  B. Scott,et al.  N-substituted amine-borane ionic liquids as fluid phase, hydrogen storage materials , 2014 .

[146]  L. Sneddon,et al.  Ammonia borane hydrogen release in ionic liquids. , 2009, Inorganic chemistry.

[147]  Zaiping Guo,et al.  Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation. , 2011, Dalton transactions.

[148]  Xue-li Li,et al.  Hydrogen generation from formic acid decomposition with a ruthenium catalyst promoted by functionalized ionic liquids. , 2010, ChemSusChem.

[149]  M. Allendorf,et al.  Nanoconfined light metal hydrides for reversible hydrogen storage , 2013 .

[150]  K. Ghandi A Review of Ionic Liquids, Their Limits and Applications , 2014 .

[151]  Hui Wu Strategies for the improvement of the hydrogen storage properties of metal hydride materials. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[152]  L. Bergström,et al.  Structuring adsorbents and catalysts by processing of porous powders , 2014 .

[153]  A. Lueking,et al.  Effect of Surface Oxygen Groups and Water on Hydrogen Spillover in Pt-Doped Activated Carbon , 2011 .

[154]  Aaron Highley,et al.  Metal-organic frameworks as templates for nanoscale NaAlH4. , 2009, Journal of the American Chemical Society.

[155]  Li Zhou,et al.  Progress and problems in hydrogen storage methods , 2005 .

[156]  Jianwei Ren,et al.  Shaping Porous Materials for Hydrogen Storage Applications: A Review , 2014 .

[157]  E. Wang,et al.  Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. , 2008, Physical review letters.

[158]  Maximilian Fichtner Nanotechnological Aspects in Materials for Hydrogen Storage , 2007 .

[159]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[160]  V. Tozzini,et al.  Prospects for hydrogen storage in graphene. , 2012, Physical chemistry chemical physics : PCCP.

[161]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[162]  O. Anunziata,et al.  Synthesis and characterization of Pt‐CMK‐3 hybrid nanocomposite for hydrogen storage , 2015 .

[163]  Bin Jiang,et al.  Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. , 2011, Nature materials.

[164]  Jairton Dupont,et al.  Ionic Liquid (Molten Salt) Phase Organometallic Catalysis , 2003 .

[165]  H. Bajaj,et al.  Activated carbon @ MIL‐101(Cr): a potential metal‐organic framework composite material for hydrogen storage , 2013 .

[166]  Theoretical investigations on low energy surfaces and nanowires of MgH(2). , 2008, Nanotechnology.

[167]  B. Rezaei,et al.  Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism , 2016 .

[168]  Jiann-Yang Hwang,et al.  Field ionization effect on hydrogen adsorption over TiO2-coated activated carbon , 2012 .

[169]  S. Wagner Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization , 2014, Magnetic Resonance Materials in Physics, Biology and Medicine.

[170]  Harvey J. Wasserman,et al.  Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand , 1984 .

[171]  I. Oh,et al.  Ortho-para hydrogen conversion characteristics of amorphous and mesoporous Cr2O3 powders at a temperature of 77 K , 2015 .

[172]  J. Hennig,et al.  A continuous‐flow, high‐throughput, high‐pressure parahydrogen converter for hyperpolarization in a clinical setting , 2013, NMR in biomedicine.

[173]  Chien-Hung Chen,et al.  Effects of oxygen functional groups on the enhancement of the hydrogen spillover of Pd-doped activated carbon. , 2015, Journal of colloid and interface science.

[174]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[175]  R. T. Yang,et al.  Effects of Pt Particle Size on Hydrogen Storage on Pt-Doped Metal―Organic Framework IRMOF-8 , 2011 .

[176]  Young Ho Kim,et al.  The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. , 2008, Journal of colloid and interface science.

[177]  E. D. Sloan,et al.  Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage. , 2009, The journal of physical chemistry. A.

[178]  A. Chakrabarti,et al.  Study of electronic structure of Co2MnSn Heusler alloy by resonant photoemission spectroscopy and ab initio calculations , 2015 .

[179]  Z. Yaakob,et al.  Synthesis of high-surface-area hexagonal LaNi5 nanofibers via electrospinning , 2012 .

[180]  Zaiping Guo,et al.  Ammonia borane confined by nitrogen-containing carbon nanotubes: enhanced dehydrogenation properties originating from synergetic catalysis and nanoconfinement , 2015 .

[181]  M. Anbia,et al.  Enhanced hydrogen sorption on modified MIL-101 with Pt/CMK-3 by hydrogen spillover effect , 2012 .

[182]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[183]  T. Hoang,et al.  Optimization of hydrogen storage capacity in silica-supported low valent Ti systems exploiting Kubas binding of hydrogen , 2009 .

[184]  J. Dupont,et al.  Decomposition of Formic Acid Catalyzed by a Phosphine‐Free Ruthenium Complex in a Task‐Specific Ionic Liquid , 2010 .

[185]  Dario Pisignano,et al.  Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review , 2013 .

[186]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[187]  T. Klassen,et al.  Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials , 2001 .

[188]  J. Dupont On the solid, liquid and solution structural organization of imidazolium ionic liquids , 2004 .

[189]  A. Yarin,et al.  Co-electrospinning of core-shell fibers using a single-nozzle technique. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[190]  D. Yogi Goswami,et al.  Volumetric hydrogen sorption measurements – Uncertainty error analysis and the importance of thermal equilibration time , 2013 .

[191]  J. Wilkes A short history of ionic liquids—from molten salts to neoteric solvents , 2002 .

[192]  W. Zhou,et al.  Zn-MOF assisted dehydrogenation of ammonia borane: Enhanced kinetics and clean hydrogen generation , 2012 .

[193]  Yaroslav Filinchuk,et al.  Complex hydrides for hydrogen storage - New perspectives , 2014 .

[194]  I. Chronakis,et al.  Polymer nanofibers assembled by electrospinning , 2003 .

[195]  S. Dunn Hydrogen Futures: Toward a Sustainable Energy System , 2001 .

[196]  R. Fischer,et al.  B-N Chemistry@ZIF-8: dehydrocoupling of dimethylamine borane at room temperature by size-confinement effects. , 2011, Chemistry.

[197]  E. Rabkin,et al.  Hydrogen storage and spillover kinetics in carbon nanotube-Mg composites , 2016 .

[198]  J. E. Benson,et al.  Adlineation, Portholes and Spillover , 1969 .

[199]  Qiang Sun,et al.  Electric field improved hydrogen storage of Ca-decorated monolayer MoS2 , 2015 .

[200]  Young-Seak Lee,et al.  The metal–carbon–fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity , 2009 .

[201]  M. Allendorf,et al.  Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. , 2012, ACS nano.

[202]  Chengshuai Liu,et al.  Ionization-induced enhancement of hydrogen storage in metalized C2H4 and C5H5 molecules , 2009 .

[203]  Henrietta W. Langmi,et al.  A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications , 2015 .

[204]  Young-Seak Lee,et al.  Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers , 2009 .

[205]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[206]  C. Arean,et al.  Materials for hydrogen storage: current research trends and perspectives. , 2008, Chemical communications.

[207]  A. Hajipour,et al.  Recent Progress in Ionic Liquids and their Applications in Organic Synthesis , 2015 .

[208]  Experimental Study of Thermal Effects in a Hydrogen Cryo-Adsorption Storage System , 2009 .

[209]  T. Yildirim,et al.  Nanoconfinement and catalytic dehydrogenation of ammonia borane by magnesium-metal-organic-framework-74. , 2011, Chemistry.

[210]  C. Milanese,et al.  2LiBH4–MgH2 nanoconfined into carbon aerogel scaffold impregnated with ZrCl4 for reversible hydrogen storage , 2016 .

[211]  Andreas Greiner,et al.  Electrospinning: a fascinating method for the preparation of ultrathin fibers. , 2007, Angewandte Chemie.

[212]  D. Dybtsev,et al.  High‐pressure hydrogen storage on modified MIL‐101 metal–organic framework , 2014 .

[213]  P. Ngene,et al.  Reversibility of the hydrogen desorption from LiBH4: a synergetic effect of nanoconfinement and Ni addition. , 2010, Chemical communications.

[214]  Zahira Yaakob,et al.  Solid-state Materials and Methods for Hydrogen Storage: A Critical Review , 2010 .

[215]  J. Deschamps,et al.  Doping activated carbon incorporated composite MIL-101 using lithium: impact on hydrogen uptake , 2015 .

[216]  Y. Oumellal,et al.  Ultrasmall MgH2 Nanoparticles Embedded in an Ordered Microporous Carbon Exhibiting Rapid Hydrogen Sorption Kinetics , 2015 .

[217]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[218]  J. Niemantsverdriet,et al.  Hydrogen spillover in the Fischer–Tropsch synthesis: An analysis of platinum as a promoter for cobalt–alumina catalysts , 2016 .

[219]  Xinlu Cheng,et al.  Hydrogen spillover mechanism on covalent organic frameworks as investigated by ab initio density functional calculation. , 2013, Physical chemistry chemical physics : PCCP.

[220]  L. Sneddon,et al.  Transition metal catalysed ammonia-borane dehydrogenation in ionic liquids. , 2011, Chemical communications.

[221]  Matthew T. Darby,et al.  Controlling Hydrogen Activation, Spillover, and Desorption with Pd-Au Single-Atom Alloys. , 2016, The journal of physical chemistry letters.

[222]  Rajesh K. Ahluwalia,et al.  On-board and Off-board performance of hydrogen storage options for light-duty vehicles , 2012 .

[223]  Henrietta W. Langmi,et al.  Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage , 2015 .

[224]  T. Hoang,et al.  Hydride-induced amplification of performance and binding enthalpies in chromium hydrazide gels for Kubas-type hydrogen storage. , 2011, Journal of the American Chemical Society.

[225]  J. Gore,et al.  A Review of Heat Transfer Issues in Hydrogen Storage Technologies , 2005 .

[226]  M. Sahimi,et al.  Solubility and diffusivity of H2 and CO2 in the ionic liquid [bmim][PF6] , 2015 .

[227]  S. Ciraci,et al.  Transition-metal-ethylene complexes as high-capacity hydrogen-storage media. , 2006, Physical review letters.

[228]  Effect of para–ortho conversion on hydrogen storage system performance , 2014 .

[229]  Martin Head-Gordon,et al.  Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. , 2006, Physical chemistry chemical physics : PCCP.

[230]  R. T. Yang,et al.  Hydrogen Spillover to Enhance Hydrogen Storage -- Study of the Effect of Carbon Physicochemical Properties , 2004 .

[231]  M. Latroche,et al.  Hydrogen Storage Properties of Nanoconfined LiBH4–Mg2NiH4 Reactive Hydride Composites , 2015 .

[232]  S. Liao,et al.  Effects of Metal Ions and Ligand Functionalization on Hydrogen Storage in Metal–Organic Frameworks by Spillover , 2011 .

[233]  R. T. Yang,et al.  Hydrogen Storage on Carbon-Based Adsorbents and Storage at Ambient Temperature by Hydrogen Spillover , 2010 .

[234]  F. Besenbacher,et al.  A reversible nanoconfined chemical reaction. , 2010, ACS nano.

[235]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[236]  W. Goddard,et al.  Ni-dispersed fullerenes: Hydrogen storage and desorption properties , 2006 .

[237]  D. Michael P. Mingos,et al.  A historical perspective on Dewar's landmark contribution to organometallic chemistry , 2001 .

[238]  Zaiping Guo,et al.  Carbon‐Coated Li3N Nanofibers for Advanced Hydrogen Storage , 2013, Advanced materials.

[239]  G. Kubas,et al.  Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. , 2007, Chemical reviews.

[240]  M. Prechtl,et al.  The role of ionic liquids in hydrogen storage. , 2014, Chemistry.