Effects of grazing intensity, habitat area and connectivity on snail-shell nesting bees

[1]  Michael J. Crawley,et al.  The R book , 2022 .

[2]  J. Weslien,et al.  Population patterns in relation to food and nesting resource for two cavity-nesting bee species in young boreal forest stands , 2018, Forest Ecology and Management.

[3]  C. Praz,et al.  Biology of Palaearctic Wainia bees of the subgenus Caposmia including a short review on snail shell nesting in osmiine bees (Hymenoptera, Megachilidae) , 2018, Journal of Hymenoptera Research.

[4]  H. de Kroon,et al.  More than 75 percent decline over 27 years in total flying insect biomass in protected areas , 2017, PloS one.

[5]  A. Holzschuh,et al.  Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors , 2014, PloS one.

[6]  R. Bommarco,et al.  Contrasting effects of habitat area and connectivity on evenness of pollinator communities , 2014 .

[7]  C. Kremen,et al.  Evaluating nesting microhabitat for ground-nesting bees using emergence traps , 2014 .

[8]  J. Biesmeijer,et al.  Combined effects of global change pressures on animal-mediated pollination. , 2013, Trends in ecology & evolution.

[9]  S. Nilsson,et al.  High population variability and source-sink dynamics in a solitary bee species. , 2013, Ecology.

[10]  Breno M. Freitas,et al.  Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance , 2013, Science.

[11]  R. Fealy,et al.  Local-scale factors structure wild bee communities in protected areas , 2012 .

[12]  T. DelCurto,et al.  Short-term responses of native bees to livestock and implications for managing ecosystem services in grasslands , 2012 .

[13]  R. Lindborg,et al.  Landscape matrix modifies richness of plants and insects in grassland fragments , 2012 .

[14]  Veronica A. J. Doerr,et al.  Connectivity, dispersal behaviour and conservation under climate change: A response to Hodgson et al. , 2011 .

[15]  Brendan A. Wintle,et al.  Habitat area, quality and connectivity: striking the balance for efficient conservation , 2011 .

[16]  I. Steffan‐Dewenter,et al.  Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes , 2010 .

[17]  J. Biesmeijer,et al.  Global pollinator declines: trends, impacts and drivers. , 2010, Trends in ecology & evolution.

[18]  S. Dorn,et al.  Long foraging distances impose high costs on offspring production in solitary bees. , 2010, The Journal of animal ecology.

[19]  V. Parra‐Tabla,et al.  Bee diversity in a fragmented landscape of the Mexican neotropic , 2010, Journal of Insect Conservation.

[20]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[21]  S. Dorn,et al.  Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances , 2010 .

[22]  S. Nilsson,et al.  Both population size and patch quality affect local extinctions and colonizations , 2010, Proceedings of the Royal Society B: Biological Sciences.

[23]  M. Luoto,et al.  Relative importance of habitat area, connectivity, management and local factors for vascular plants: spring ephemerals in boreal semi-natural grasslands , 2009, Biodiversity and Conservation.

[24]  Jochen Krauss,et al.  Habitat area but not habitat age determines wild bee richness in limestone quarries , 2009 .

[25]  S. Nilsson,et al.  Small local population sizes and high habitat patch fidelity in a specialised solitary bee , 2009, Journal of Insect Conservation.

[26]  Theodora Petanidou,et al.  MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS , 2008 .

[27]  I. Steffan‐Dewenter,et al.  Do resources or natural enemies drive bee population dynamics in fragmented habitats? , 2008, Ecology.

[28]  J. Bengtsson,et al.  The influence of grazing intensity and landscape composition on the diversity and abundance of flower‐visiting insects , 2007 .

[29]  J. Cane,et al.  Substrates and Materials Used for Nesting by North American Osmia Bees (Hymenoptera: Apiformes: Megachilidae) , 2007 .

[30]  S. Potts,et al.  The effects of cattle grazing on plant-pollinator communities in a fragmented Mediterranean landscape , 2006 .

[31]  C. Melis,et al.  Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia , 2006 .

[32]  Carsten Thies,et al.  REVIEWS AND SYNTHESES Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management , 2005 .

[33]  T. Roulston,et al.  Farming Practices Influence Wild Pollinator Populations on Squash and Pumpkin , 2005, Journal of economic entomology.

[34]  S. Potts,et al.  Role of nesting resources in organising diverse bee communities in a Mediterranean landscape , 2005 .

[35]  Inge Bischoff Population dynamics of the solitary digger bee Andrena vaga Panzer (Hymenoptera, Andrenidae) studied using mark-recapture and nest counts , 2003, Population Ecology.

[36]  Pat Willmer,et al.  LINKING BEES AND FLOWERS: HOW DO FLORAL COMMUNITIES STRUCTURE POLLINATOR COMMUNITIES? , 2003 .

[37]  C. Rosa,et al.  Inverse density-dependent and density-independent parasitism in a solitary ground-nesting bee in Southeast Brazil , 2003 .

[38]  Timothy J. Roper,et al.  Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops , 2003 .

[39]  T. Tscharntke,et al.  Grazing Intensity and the Diversity of Grasshoppers, Butterflies, and Trap‐Nesting Bees and Wasps , 2002 .

[40]  Achim Gathmann,et al.  Foraging ranges of solitary bees , 2002 .

[41]  Atte Moilanen,et al.  SIMPLE CONNECTIVITY MEASURES IN SPATIAL ECOLOGY , 2002 .

[42]  P. Poschlod,et al.  The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past , 2002 .

[43]  S. Potts,et al.  Abiotic and biotic factors influencing nest‐site selection by Halictus rubicundus, a ground‐nesting halictine bee , 1997 .

[44]  H. Bellmann Bienen in Schneckenhäusern , 1997 .

[45]  W. Wcislo Parasitism rates in relation to nest site in bees and wasps (Hymenoptera: Apoidea) , 1996, Journal of Insect Behavior.

[46]  Mark V. Lomolino,et al.  Species Diversity in Space and Time. , 1996 .

[47]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[48]  D. Kleijn,et al.  Managing trap‐nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists , 2018 .

[49]  S. Dorn,et al.  Molecular phylogeny of the bee genus Hoplitis (Megachilidae: Osmiini) – how does nesting biology affect biogeography? , 2013 .

[50]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[51]  I. Steffan‐Dewenter,et al.  Linking life history traits to pollinator loss in fragmented calcareous grasslands , 2012, Landscape Ecology.

[52]  K. Goodell,et al.  The role of resources and risks in regulating wild bee populations. , 2011, Annual review of entomology.

[53]  I. Alves-dos-Santos,et al.  The oligolectic solitary bee Melitta tricinta Kirby, 1802 (Sw. rödtoppebi) in Sweden (Hymenoptera, Apoidea, Melittidae)* , 2009 .

[54]  F. W. Gess,et al.  Patterns of usage of snail shells for nesting by wasps (Vespidae : Masarinae and Eurneninae) and bees (Megachilidae : Megachilinae) in southern Africa , 2008 .

[55]  I. Hanski A Practical Model of Metapopulation Dynamics , 1994 .

[56]  Christopher O'Toole,et al.  Bees of the world , 1991 .