Wiener Dimension: Fundamental Properties and (5,0)-Nanotubical Fullerenes
暂无分享,去创建一个
Yaser Alizadeh | Sandi Klavžar | Riste Škrekovski | Vesna Andova | S. Klavžar | Y. Alizadeh | Vesna Andova | R. Škrekovski
[1] Hua Wang,et al. All but 49 Numbers are Wiener Indices of Trees , 2006 .
[2] Heiko Wittenberg,et al. Local medians in chordal graphs , 1990, Discret. Appl. Math..
[3] Stephan Wagner. A Class of Trees and its Wiener Index , 2006 .
[4] M. Darafsheh. Computation of Topological Indices of Some Graphs , 2010 .
[5] M. Conder,et al. A census of semisymmetric cubic graphs on up to 768 vertices , 2006 .
[6] Metrose Metsidik. Semi-cartesian product of graphs , 2014, Journal of Mathematical Chemistry.
[7] Sandi Klavzar,et al. Wiener index versus Szeged index in networks , 2013, Discret. Appl. Math..
[8] Ivan Gutman,et al. A Collective Property of Trees and Chemical Trees , 1998, J. Chem. Inf. Comput. Sci..
[9] Gang Yu,et al. Molecular graphs and the inverse Wiener index problem , 2009, Discret. Appl. Math..
[10] Sandi Klavzar,et al. Computing median and antimedian sets in median graphs , 2010, Algorithmica.
[11] Ante Graovac,et al. Distance Property of Fullerenes , 2011 .
[12] Martin Knor,et al. Wiener index of iterated line graphs of trees homeomorphic to the claw K1, 3 , 2013, Ars Math. Contemp..
[14] Giuseppe Lancia,et al. Algorithmic strategies in combinatorial chemistry , 2000, SODA '00.
[15] Hans-Jürgen Bandelt,et al. Graphs with Connected Medians , 2002, SIAM J. Discret. Math..
[16] Gordon G. Cash,et al. Three Methods for Calculation of the Hyper-Wiener Index of Molecular Graphs , 2002, J. Chem. Inf. Comput. Sci..
[17] Riste Škrekovski,et al. On the diameter and some related invariants of fullerene graphs , 2012 .
[18] Roberto Cruz,et al. Wiener index of Eulerian graphs , 2014, Discret. Appl. Math..
[19] Huiqing Liu,et al. On the Wiener Index of Graphs , 2010 .
[20] D. West. Introduction to Graph Theory , 1995 .
[21] Jirí Fink,et al. Some remarks on inverse Wiener index problem , 2012, Discret. Appl. Math..
[22] Branko Grünbaum,et al. The Number of Hexagons and the Simplicity of Geodesics on Certain Polyhedra , 1963, Canadian Journal of Mathematics.