Wiener Dimension: Fundamental Properties and (5,0)-Nanotubical Fullerenes

The Wiener dimension of a connected graph is introduced as the number of different distances of its vertices. For any integer D and any integer k, a graph of diameter D and of Wiener dimension k is constructed. An infinite family of nonvertex-transitive graphs with Wiener dimension 1 is presented and it is proved that a graph of dimension 1 is 2-connected. It is shown that the (5, 0)-nanotubical fullerene graph on 10k (k ≥ 3) vertices has Wiener dimension k. As a consequence the Wiener index of these fullerenes is obtained. Corresponding author

[1]  Hua Wang,et al.  All but 49 Numbers are Wiener Indices of Trees , 2006 .

[2]  Heiko Wittenberg,et al.  Local medians in chordal graphs , 1990, Discret. Appl. Math..

[3]  Stephan Wagner A Class of Trees and its Wiener Index , 2006 .

[4]  M. Darafsheh Computation of Topological Indices of Some Graphs , 2010 .

[5]  M. Conder,et al.  A census of semisymmetric cubic graphs on up to 768 vertices , 2006 .

[6]  Metrose Metsidik Semi-cartesian product of graphs , 2014, Journal of Mathematical Chemistry.

[7]  Sandi Klavzar,et al.  Wiener index versus Szeged index in networks , 2013, Discret. Appl. Math..

[8]  Ivan Gutman,et al.  A Collective Property of Trees and Chemical Trees , 1998, J. Chem. Inf. Comput. Sci..

[9]  Gang Yu,et al.  Molecular graphs and the inverse Wiener index problem , 2009, Discret. Appl. Math..

[10]  Sandi Klavzar,et al.  Computing median and antimedian sets in median graphs , 2010, Algorithmica.

[11]  Ante Graovac,et al.  Distance Property of Fullerenes , 2011 .

[12]  Martin Knor,et al.  Wiener index of iterated line graphs of trees homeomorphic to the claw K1, 3 , 2013, Ars Math. Contemp..

[13]  Computing PI and Szeged indices of multiple phenylenes and cyclic hexagonal-square chain consisting of mutually isomorphic hexagonal chains , 2007 .

[14]  Giuseppe Lancia,et al.  Algorithmic strategies in combinatorial chemistry , 2000, SODA '00.

[15]  Hans-Jürgen Bandelt,et al.  Graphs with Connected Medians , 2002, SIAM J. Discret. Math..

[16]  Gordon G. Cash,et al.  Three Methods for Calculation of the Hyper-Wiener Index of Molecular Graphs , 2002, J. Chem. Inf. Comput. Sci..

[17]  Riste Škrekovski,et al.  On the diameter and some related invariants of fullerene graphs , 2012 .

[18]  Roberto Cruz,et al.  Wiener index of Eulerian graphs , 2014, Discret. Appl. Math..

[19]  Huiqing Liu,et al.  On the Wiener Index of Graphs , 2010 .

[20]  D. West Introduction to Graph Theory , 1995 .

[21]  Jirí Fink,et al.  Some remarks on inverse Wiener index problem , 2012, Discret. Appl. Math..

[22]  Branko Grünbaum,et al.  The Number of Hexagons and the Simplicity of Geodesics on Certain Polyhedra , 1963, Canadian Journal of Mathematics.