Regulation of atmospheric CO2 by deep‐sea sediments in an Earth system model

[1] We have extended the GENIE-1 Earth system model to include a representation of sedimentary stratigraphy and the preservation of biogenic carbonates delivered to the ocean floor. This has enabled us to take a novel approach in diagnosing modern marine carbon cycling: assimilating observation of the calcium carbonate (CaCO3) content of deep-sea sediments with an ensemble Kalman filter. The resulting calibrated model predicts a mean surface sediment content (32.5 wt%) close to the observed value (34.8 wt%), and a global burial rate of CaCO3 in deep sea sediments of 0.121 PgC yr−1, in line with recent budget estimates of 0.10−0.14 PgC yr−1. We employ the GENIE-1 model in quantifying the multimillennial-scale fate of fossil fuel CO2 emitted to the atmosphere. In the absence of any interaction between ocean and sediments, an equilibrium partitioning of CO2 is reached within ∼1000 years of emissions ceasing, with 34% (645 ppm) remaining in the atmosphere out of a total fossil fuel burn of 4173 PgC. An additional 12% of CO2 emissions (223 ppm) are sequestered as bicarbonate ions (HCO3−) by reaction with deep-sea carbonates (“seafloor CaCO3 neutralization”) on a timescale of ∼1.7 ka. Excess of carbonate weathering on land over deep-sea burial results in a further net transformation of 14% of CO2 emissions (261 ppm) into HCO3− (“terrestrial CaCO3 neutralization”) on a timescale of ∼8.3 ka. We have also assessed the importance of a changing climate in modulating the stabilization of atmospheric CO2 through ocean-sediment interaction. Increased ocean stratification suppresses particulate organic carbon export, which in turn enhances seafloor CaCO3 preservation. The resulting reduction in the sequestration of fossil fuel CO2 represents a new positive feedback on millennial-scale climate change.

[1]  Ian G. Enting,et al.  Future emissions and concentrations of carbon dioxide: Key ocean / atmosphere / land analyses , 1994 .

[2]  A. Ridgwell Application of sediment core modelling to understanding climates of the past: An example from glacial-interglacial changes in Southern Ocean silica cycling , 2006 .

[3]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[4]  A. Vecsei A new estimate of global reefal carbonate production including the fore-reefs , 2004 .

[5]  A. Ridgwell Application of sediment core modelling to interpreting the glacial-interglacial record of Southern Ocean silica cycling , 2007 .

[6]  David Archer,et al.  A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains , 2002 .

[7]  V. Brovkin,et al.  The importance of ocean temperature to global biogeochemistry , 2004 .

[8]  James D. Annan,et al.  An efficient climate forecasting method using an intermediate complexity Earth System Model and the ensemble Kalman filter , 2004 .

[9]  Gian-Kasper Plattner,et al.  Feedback mechanisms and sensitivities of ocean carbon uptake under global warming , 2001 .

[10]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[11]  David Archer,et al.  Modeling the calcite lysocline , 1991 .

[12]  M. Stuiver,et al.  Discussion: Reporting of 14 C Data , 1977 .

[13]  Robert B. Dunbar,et al.  Regional variability in the vertical flux of particulate organic carbon in the ocean interior , 2002 .

[14]  Bas Eickhout,et al.  Impacts of future land cover changes on atmospheric CO2 and climate , 2005 .

[15]  W. Broecker,et al.  Pacific carbonate dissolution revisited , 1993 .

[16]  Christoph Heinze,et al.  Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model , 2006 .

[17]  R. Najjar,et al.  Opening Pandora's Box: The impact of open system modeling on interpretations of anoxia , 2000 .

[18]  J. Dunne,et al.  Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions , 2006 .

[19]  Ulf Riebesell,et al.  Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2 , 2001 .

[20]  Denis Allemand,et al.  Impacts of ocean acidification on coral reefs and other marine calcifiers : a guide for future research , 2006 .

[21]  W. Broecker,et al.  The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change , 1987 .

[22]  A. Ridgwell An end to the “rain ratio” reign? , 2003 .

[23]  T. Lenton Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model , 2000 .

[24]  K. Caldeira,et al.  Oceanography: Anthropogenic carbon and ocean pH , 2003, Nature.

[25]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[26]  David Archer,et al.  A data-driven model of the global calcite lysocline , 1996 .

[27]  J. Milliman,et al.  Neritic and pelagic carbonate sedimentation in the marine environment : ignorance is not bliss , 1996 .

[28]  G. Munhoven Glacial–interglacial changes of continental weathering: estimates of the related CO2 and HCO3− flux variations and their uncertainties , 2002 .

[29]  David Archer,et al.  What caused the glacial/interglacial atmospheric pCO2 cycles? , 2000 .

[30]  M. Bender,et al.  Carbon fluxes at the sediment-water interface of the deep-sea: calcium carbonate preservation. , 1981 .

[31]  T. Lenton,et al.  Significant long-term increase of fossil fuel CO2 uptake from reduced marine calcification , 2006 .

[32]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[33]  C. Heinze Towards the time dependent modeling of sediment core data on a global basis , 2001 .

[34]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[35]  C. Heip,et al.  Respiration patterns in the deep ocean , 2004 .

[36]  David Archer,et al.  Multiple timescales for neutralization of fossil fuel CO2 , 1997 .

[37]  E. Sundquist Influence of deep-sea benthic processes on atmospheric CO2 , 1990, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  James D. Annan,et al.  Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling , 2006 .

[39]  Andy Ridgwell,et al.  The role of the global carbonate cycle in the regulation and evolution of the Earth system , 2005 .

[40]  Robert Marsh,et al.  Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model , 2005 .

[41]  R. Sepanski,et al.  TRENDS '90: A compendium of data on global change , 1991 .

[42]  A. R. Price,et al.  Millennial timescale carbon cycle and climate change in an efficient Earth system model , 2006 .

[43]  E. Maier‐Reimer,et al.  Dynamics of fossil fuel CO2 neutralization by marine CaCO3 , 1998 .

[44]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[45]  David Archer,et al.  Fate of fossil fuel CO2 in geologic time , 2005 .

[46]  Christoph Heinze,et al.  A global oceanic sediment model for long‐term climate studies , 1999 .

[47]  David Archer,et al.  Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio , 2002 .

[48]  Lee R. Kump,et al.  Global chemical erosion over the last 250 MY: Variations due to changes in paleogeography, paleoclimate, and paleogeology , 1999 .

[49]  D. Archer,et al.  Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results , 1989 .