A finite element method for crack growth without remeshing
暂无分享,去创建一个
[1] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[2] M. Rashid. The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis , 1998 .
[3] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[4] J. Oliver. MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 2: NUMERICAL SIMULATION , 1996 .
[5] J. Oliyer. Continuum modelling of strong discontinuities in solid mechanics using damage models , 1995 .
[6] E. Gdoutos,et al. Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.
[7] C. Shih,et al. Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding , 1988 .
[8] Shuodao Wang,et al. A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .
[9] D. Griffin,et al. Finite-Element Analysis , 1975 .
[10] R. Nuismer. An energy release rate criterion for mixed mode fracture , 1975 .
[11] G. Sih. Strain-energy-density factor applied to mixed mode crack problems , 1974 .
[12] Ivo Babuška,et al. A finite element scheme for domains with corners , 1972 .
[13] F. Erdogan,et al. On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .
[14] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[15] S. Benzley. Representation of singularities with isoparametric finite elements , 1974 .
[16] Ivo Babugka,et al. A Finite Element Scheme for Domains with Corners , 2022 .