Border Map: A Topological Representation for nD Image Analysis

This article presents an algorithm computing a border map of an image that generalizes to the n dimension graph structures used in image analysis. Such a map represents simple and multiple adjacencies, inclusion of regions, as well as the frontier type between two adjacent regions. An algorithm computing a border map, linear to the number of elements of an image, is defined in 2D, then generalized in 3D and in nD.

[1]  Azriel Rosenfeld,et al.  Adjacency in Digital Pictures , 1974, Inf. Control..

[2]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[3]  Jean Françon Discrete Combinatorial Surfaces , 1995, CVGIP Graph. Model. Image Process..

[4]  Robert Cori,et al.  Un code pour les graphes planaires et ses applications , 1973 .

[5]  Jean Françon,et al.  On recent trends in discrete geometry in computer science , 1996, DGCI.

[6]  Pascal Lienhardt,et al.  Topological models for boundary representation: a comparison with n-dimensional generalized maps , 1991, Comput. Aided Des..

[7]  Pascal Lienhardt,et al.  Subdivisions of n-dimensional spaces and n-dimensional generalized maps , 1989, SCG '89.

[8]  Ehoud Ahronovitz,et al.  The Star-Topology: a topology for image analysis , 1995 .

[9]  Rafael Ayala,et al.  Determining the components of the complement of a digital (n-1)-manifold in Zn , 1996, DGCI.

[10]  Atsushi Imiya,et al.  Polyhedra generation from lattice points , 1996, DGCI.

[11]  P. R. Meyer,et al.  Computer graphics and connected topologies on finite ordered sets , 1990 .

[12]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[13]  Pascal Lienhardt,et al.  Aspects in Topology-Based Geometric Modeling , 1997, DGCI.

[14]  Christophe Fiorio,et al.  Approche interpixel en analyse d'images : une topologie et des algorithmes de segmentation. (Inter pixel approach in image analysis: a topology and segmentation algorithms) , 1995 .

[15]  Christophe Fiorio,et al.  A topologically consistent representation for image analysis: the Topological Graph of Frontiers , 1996, DGCI.

[16]  Christophe Fiorio,et al.  Two Linear Time Union-Find Strategies for Image Processing , 1996, Theor. Comput. Sci..

[17]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..