Efficient Higher-Order Finite Volume Schemes for (Real Gas) Magnetohydrodynamics

The computational costs for solving the real gas Euler or MHD equations can be strongly reduced if we use an adaptive table instead of the full equation of state. We demonstrate this behaviour for an example from solar physics. Moreover, we introduce a new limiter suitable for second-order finite volume schemes which are based on linear reconstructions on unstructured triangular grids. This new limiter cures several problems of the approaches commonly used. Finally, we show that local grid adaption always seems to pay off in id and 2d, whereas a high-resolution first-order scheme can be more efficient (in terms of computational time versus error) than the second-order schemes.