A Parallel Sparse QR-Factorization Algorithm
暂无分享,去创建一个
Zahari Zlatev | Per Christian Hansen | Tzvetan Ostromsky | P. Hansen | Z. Zlatev | Tzvetan Ostromsky
[1] Alston S. Householder,et al. Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.
[2] Å. Björck. Least squares methods , 1990 .
[3] John R. Rice,et al. PARVEC Workshop on Very Large Least Squares Problems and Supercomputers , 1983 .
[4] John G. Lewis,et al. Sparse matrix test problems , 1982, SGNM.
[5] P. Hansen,et al. Improving the numerical stability and the performance of a parallel sparse solver , 1995 .
[6] Å. Björck,et al. Large scale matrix problems , 1983 .
[7] Åke Björck,et al. Stability analysis of the method of seminormal equations for linear least squares problems , 1987 .
[8] W. E. Gentleman. Least Squares Computations by Givens Transformations Without Square Roots , 1973 .
[9] Z. Zlatev. Computational Methods for General Sparse Matrices , 1991 .
[10] Patrick Amestoy,et al. Multifrontal QR Factorization in a Multiprocessor Environment , 1996, Numer. Linear Algebra Appl..
[11] A. George,et al. Solution of sparse linear least squares problems using givens rotations , 1980 .
[12] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[13] A. George,et al. A Comparison of Some Methods for Solving Sparse Linear Least-Squares Problems , 1983 .
[14] Xiaoge Wang. Incomplete factorization preconditioning for linear least squares problems , 1994 .
[15] W. Givens. Computation of Plain Unitary Rotations Transforming a General Matrix to Triangular Form , 1958 .