Introduction to ultra-high-speed optical transmission technology

This paper serves as an introduction to this volume on ultra-high-speed optical transmission technology. It reviews ultra-high-speed data transmission in optical fibers, which is essentially the same as optical time division multiplexing (OTDM) transmission technology. The research work in this field is driven by the need to increase the transmission capacity and controllability of fiber optic networks as well as by an interest in investigating the feasibility of high-speed data transmission in fiber. The chapter summarizes OTDM components and describes results of OTDM-transmission experiments. In addition, it outlines the chapters of this volume, which describe the considered topics in detail.

[1]  Carsten Schmidt-Langhorst,et al.  160 Gbit/s DPSK transmission over 320 km fibre link with high long-term stability , 2005 .

[2]  S. Mino,et al.  160-Gb/s optical-time-division multiplexing with PPLN hybrid integrated planar lightwave circuit , 2003, IEEE Photonics Technology Letters.

[3]  Nick Doran,et al.  Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer , 1990 .

[4]  Carsten Schmidt-Langhorst,et al.  640 Gbit/s DQPSK, single wavelength-channel transmission over 480 km fibre link , 2005 .

[5]  H. Weber,et al.  Unrepeatered 160 Gbit/s RZ single-channel transmission over 160 km of standard fibre at 1.55 /spl mu/m with hybrid MZI optical demultiplexer , 2000 .

[6]  Colja Schubert,et al.  Error-free all-optical add-drop multiplexing at 160 Gbit/s , 2003 .

[7]  C. Schubert,et al.  160 Gbit/s demultiplexer with clock recovery using SOA-based interferometric switches and its application to 120 km fiber transmission , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[8]  G. Agrawal Fiber‐Optic Communication Systems , 2021 .

[9]  Colja Schubert,et al.  160 Gbit/s clock recovery with electro-optical PLL using bidirectionally operated electroabsorption modulator as phase comparator , 2003 .

[10]  O. Kamatani,et al.  Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier , 1996, IEEE Photonics Technology Letters.

[11]  Toshio Morioka,et al.  200 Gbit/s, 100 km time-division-multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing , 1995 .

[12]  Colja Schubert,et al.  Comparison of DPSK and OOK modulation format in 160 Gbit/s transmission system , 2003 .

[13]  D. Sandel,et al.  1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation , 2005, IEEE Photonics Technology Letters.

[14]  Peter A. Andrekson,et al.  Fiber-based optical parametric amplifiers and their applications , 2002 .

[15]  Masatoshi Saruwatari All-Optical Time-Division Multiplexing Technology , 2001 .

[16]  A.H. Gnauck,et al.  Optical phase-shift-keyed transmission , 2005, Journal of Lightwave Technology.

[17]  Masataka Nakazawa,et al.  TDM single channel 640 Gbit/s transmission experiment over 60 km using 400 fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror , 1998 .

[18]  Hiroshi Ito,et al.  320 Gbit/s error-free demultiplexing using ultrafast optical gate monolithically integrating a photodiode and electroabsorption modulator , 2002 .

[19]  W. Idler,et al.  10.2 Tbit/s (256x42.7 Gbit/s PDM/WDM) transmission over 100 km TeraLight/sup TM/ fiber with 1.28 bit/s/Hz spectral efficiency , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[20]  P. Mamyshev All-optical data regeneration based on self-phase modulation effect , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[21]  S. Mino,et al.  160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing , 2004, IEEE Photonics Technology Letters.

[22]  H. Weber,et al.  320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator , 2003, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[23]  S. Randel,et al.  Influence of Bitwise Phase Changes on the Performance of 160 Gbit/s Transmission Systems , 2002, 2002 28TH European Conference on Optical Communication.

[24]  Hsu-Feng Chou,et al.  Compact 160-Gb/s add-drop multiplexer with a 40-Gb/s base rate using electroabsorption modulators , 2004, IEEE Photonics Technology Letters.

[25]  M. Kawachi,et al.  160 Gbit/s soliton data transmission over 200 km , 1995 .

[26]  K. Kojima,et al.  160 Gb/s single-channel unrepeatered transmission over 200 km of non-zero dispersion shifted fiber , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[27]  M. Saruwatari,et al.  All-optical signal processing for terabit/second optical transmission , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  A. Beling,et al.  InP-based waveguide-integrated photodetector with 100-GHz bandwidth , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  M. Kagawa,et al.  Single Channel 160 Gbit/s (40 Gbit/s × 4) 300 km - Transmission Using EA Modulator based - OTDM Module and 40 GHz External - Cavity Mode-locked LD , 2002, 2002 28TH European Conference on Optical Communication.

[30]  M. Nakazawa,et al.  1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator , 2000 .

[31]  H. Takara,et al.  160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC , 2002 .

[32]  C. Schubert,et al.  160 Gbit/s transmission over 116 km field-installed fiber using 160 Gbit/s OTDM and 40 Gbit/s ETDM , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[33]  J. Broeng,et al.  Photonic crystal fibers , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[34]  S. Kawanishi,et al.  Add/drop operation for 100 Gbit/s optical signal based on optical wavelength conversion by four-wave mixing , 1996 .

[35]  K. Fukuchi,et al.  10.92-Tb/s (273/spl times/40-Gb/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[36]  T. Otani,et al.  160-Gb/s four WDM quasi-linear transmission over 225-km NZ-DSF with 75-km spacing , 2003, IEEE Photonics Technology Letters.

[37]  Carsten Schmidt-Langhorst,et al.  160 Gbit/s OTDM Long-Haul Transmission with Long-Term Stability Using RZ-DPSK Modulation Format , 2005, IEICE Trans. Commun..

[38]  H. Moriya,et al.  Tunable Dispersion and Dispersion Slope Compensator Based on Two Twin Chirped FBGs with Temperature Gradient for 160 Gbit/s Transmission , 2004 .

[39]  S. Kawanishi,et al.  Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing , 1998 .

[40]  K. Dreyer,et al.  320-Gb/s single-channel pseudolinear transmission over 200 km of nonzero-dispersion fiber , 2000, IEEE Photonics Technology Letters.

[41]  Klaus Petermann,et al.  Impact of fiber chromatic dispersion in high-speed TDM transmission systems , 2002 .

[42]  S. Irmscher,et al.  80 Gb/s ETDM transmitter with a traveling-wave electroabsorption modulator , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[43]  E. Lach,et al.  4×160 Gbit/s DWDM / OTDM transmission over 3×80 km TeraLight™-Reverse TeraLight™ fibre , 2002 .

[44]  Juerg Leuthold,et al.  100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration , 2000 .

[45]  Peter A. Andrekson,et al.  Long-term automatic PMD compensation for 160 Gbit/s RZ transmission , 2002 .

[46]  G. Lehmann,et al.  Field trial of 160 Gbit/s OTDM add/drop node in a link 275 km deployed fiber , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[47]  H. Rosenfeldt,et al.  Automatic PMD compensator in a 160-Gb/s OTDM transmission over deployed fiber using RZ-DPSK modulation format , 2005, Journal of Lightwave Technology.

[48]  Eugen Lach,et al.  Advanced 160 Gbit/s OTDM system based on wavelength transparent 4 /spl times/ 40 Gbit/s ETDM transmitters and receivers , 2002, Optical Fiber Communication Conference and Exhibit.

[49]  G. Raybon,et al.  1-Tb/s (6 x 170.6 Gb/s) transmission over 2000-km NZDF using OTDM and RZ-DPSK format , 2003, IEEE Photonics Technology Letters.

[50]  Friday Morning,et al.  Post-Deadline Papers , 1975 .

[51]  J.E. Bowers,et al.  Compact 160-Gb/s add-drop multiplexing with a 40-Gb/s base-rate , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[52]  S. Stulz,et al.  Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating , 2000, IEEE Photonics Technology Letters.

[53]  H. Takara,et al.  3 Tbit/s (160 Gbit/s/spl times/19 channel) optical TDM and WDM transmission experiment , 1999 .

[54]  T. Morioka,et al.  Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique , 2002, IEEE Photonics Technology Letters.

[55]  H. Weber,et al.  Single- and alternating-polarization 170-gb/s transmission up to 4000 km using dispersion-managed fiber and all-Raman amplification , 2006, IEEE Photonics Technology Letters.

[56]  H. Weber,et al.  Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission , 2006 .

[57]  H. Weber,et al.  Monolithically integrated balanced photodetector and its application in OTDM 160 Gbit/s DPSK transmission , 2003 .

[58]  F. Buchali,et al.  Dynamic distortion compensation in a 160 Gb/s RZ OTDM system: adaptive 2 stage PMD compensation , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[59]  Hidehiko Takara,et al.  1.4 Tbit/s (200 Gbit/s × 7 ch) 50 km optical transmission experiment , 1997 .

[60]  E. Tangdiongga,et al.  160 Gb/s OTDM networking using deployed fiber , 2005, Journal of Lightwave Technology.

[61]  Toshio Morioka,et al.  Single channel 400 Gbit/s time-division-multiplexed transmission of 0.98 ps pulses over 40 km employing dispersion slope compensation , 1996 .

[62]  David Graham Moodie,et al.  80 Gbit/s OTDM using electroabsorption modulators , 1998 .

[63]  C. Madsen Integrated waveguide allpass filter tunable dispersion compensators , 2002, Optical Fiber Communication Conference and Exhibit.

[64]  Shigeki Watanabe,et al.  Transparent wavelength conversion at up to 160Gb/s by using supercontinuum generation in a nonlinear fiber , 2003 .

[65]  David Graham Moodie,et al.  Full 10/spl times/10 Gbit/s OTDM data generation and demultiplexing using electroabsorption modulators , 1998 .

[66]  H. G. Weber,et al.  All-optical switch for TDM and WDM/TDM systems demonstrated in a 640 Gbit/s demultiplexing experiment , 1998 .

[68]  B. Zhu,et al.  High spectral efficiency (0.53 bit/s/Hz) WDM transmission of 160 Gb/s per wavelength over 400 km of fiber , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[69]  T. Miyazaki,et al.  Stable 160-Gb/s DPSK Transmission using a simple PMD compensator on the field photonic network test bed of JGN II , 2004 .

[70]  Y. Ueno,et al.  168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch , 2001, IEEE Photonics Technology Letters.

[71]  T. Schneider,et al.  Wavelength and line width measurement of optical sources with femtometre resolution , 2005 .

[72]  K. Yonenaga,et al.  640-Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and "reverse dispersion fiber" , 2000, IEEE Photonics Technology Letters.

[73]  L. Moller,et al.  Ultra high-speed data signals with alternating and pairwise alternating optical phases , 2005, Journal of Lightwave Technology.