Design considerations for optical interconnects in parallel computers

Communication complexity and latency is a critical problem in multiprocessor systems. A significant portion of communication latency is associated with the interconnect network. Optics has many advantages for achieving low latency, scalable interprocessor communication. The author identifies significant ways in which optical technology can boost network functionality and performance when key architectural and implementation design issues are considered. A high bandwidth, reconfigurable optical interconnect capable of increased network throughput and optimal processor-memory connectivity can result from this approach.<<ETX>>

[1]  J. Goodman,et al.  Fiber-Optic Crossbar Switch With Broadcast Capability , 1988 .

[2]  Alexander V. Veidenbaum,et al.  Compiler-directed data prefetching in multiprocessors with memory hierarchies , 1990, ICS '90.

[3]  M. Hill,et al.  Weak ordering-a new definition , 1990, [1990] Proceedings. The 17th Annual International Symposium on Computer Architecture.

[4]  Anoop Gupta,et al.  Memory consistency and event ordering in scalable shared-memory multiprocessors , 1990, [1990] Proceedings. The 17th Annual International Symposium on Computer Architecture.

[5]  Thomas H. Dunigan KENDALL SQUARE MULTIPROCESSOR: EARLY EXPERIENCES AND PERFORMANCE , 1992 .

[6]  J W Goodman,et al.  Design considerations for holographic optical interconnects. , 1987, Applied optics.

[7]  Anoop Gupta,et al.  Tolerating Latency Through Software-Controlled Prefetching in Shared-Memory Multiprocessors , 1991, J. Parallel Distributed Comput..

[8]  C C Guest,et al.  Computer generated holographic optical elements for optical interconnection of very large scale integrated circuits. , 1987, Applied optics.

[9]  Daniel H. Linder,et al.  An Adaptive and Fault Tolerant Wormhole Routing Strategy for k-Ary n-Cubes , 1994, IEEE Trans. Computers.

[10]  Y Fainman,et al.  Computerized design and generation of space-variant holographic filters: 2: Applications of space-variant filters to optical computing. , 1988, Applied optics.

[11]  Timothy Mark Pinkston,et al.  Parallel Processor Memory Reference Analysis: Examining Locality and Clustering Potential , 1991, PPSC.

[12]  L. A. Bergman,et al.  Optical Interconnection Techniques For Hypercube , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[13]  D A Gregory,et al.  Reconfigurable interconnections using photorefractive holograms. , 1990, Applied optics.

[14]  Josep Torrellas,et al.  Share Data Placement Optimizations to Reduce Multiprocessor Cache Miss Rates , 1990, ICPP.

[15]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[16]  Steve Redfield,et al.  Design sketches for optical crossbar switches intended for large-scale parallel processing applications , 1989 .

[17]  William J. Dally,et al.  Performance Analysis of k-Ary n-Cube Interconnection Networks , 1987, IEEE Trans. Computers.

[18]  G A De Biase,et al.  Optical multistage interconnection networks for large-scale multiprocessor systems. , 1988, Applied optics.

[19]  J W Goodman,et al.  Design of an optical reconfigurable shared-bus-hypercube interconnect. , 1994, Applied optics.

[20]  Y Sheng,et al.  Space invariant multiple imaging for hypercube interconnections. , 1990, Applied optics.

[21]  T. M. Pinkston,et al.  Parallel Processor Memory Reference Analysis and its Application to Interconnect Architecture , 1990, Proceedings of the Fifth Distributed Memory Computing Conference, 1990..

[22]  Livio Ricciulli,et al.  The detection and elimination of useless misses in multiprocessors , 1993, ISCA '93.

[23]  A.A. Sawchuk,et al.  Digital optical computing , 1984, Proceedings of the IEEE.

[24]  D. Lioupis,et al.  Multiple vs. wide shared bus multiprocessors , 1989, ISCA '89.

[25]  F Sauer,et al.  Fabrication of diffractive-reflective optical interconnects for infrared operation based on total internal reflection. , 1989, Applied optics.

[26]  Reinhard Männer,et al.  Optical Interconnection For Multiprocessor Computer Bus Systems , 1989 .

[27]  A K Ghosh,et al.  Alignability of optical interconnects. , 1990, Applied optics.

[28]  K H Brenner,et al.  Optical implementations of the perfect shuffle interconnection. , 1988, Applied optics.

[29]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[30]  Anant Agarwal,et al.  APRIL: a processor architecture for multiprocessing , 1990, [1990] Proceedings. The 17th Annual International Symposium on Computer Architecture.

[31]  James K. Archibald,et al.  Cache coherence protocols: evaluation using a multiprocessor simulation model , 1986, TOCS.

[32]  Pen-Chung Yew,et al.  : Data Prefetching In Shared Memory Multiprocessors , 1987, ICPP.

[33]  P. Marchand,et al.  Grain-size considerations for optoelectronic multistage interconnection networks. , 1992, Applied optics.

[34]  Anoop Gupta,et al.  Cache Invalidation Patterns in Shared-Memory Multiprocessors , 1992, IEEE Trans. Computers.

[35]  A. Gupta,et al.  Exploring the benefits of multiple hardware contexts in a multiprocessor architecture: preliminary results , 1989, ISCA '89.

[36]  William J. Dally Virtual-channel flow control , 1990, ISCA '90.

[37]  Eric S. Maniloff,et al.  Dynamic holographic interconnects using static holograms , 1990, Annual Meeting Optical Society of America.

[38]  Leonard Kleinrock,et al.  Virtual Cut-Through: A New Computer Communication Switching Technique , 1979, Comput. Networks.

[39]  C C Guest,et al.  Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities. , 1989, Applied optics.

[40]  Robert H. Halstead,et al.  MASA: a multithreaded processor architecture for parallel symbolic computing , 1988, [1988] The 15th Annual International Symposium on Computer Architecture. Conference Proceedings.