Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring

[1]  H. Eskalen,et al.  Mesogenic properties of PAA/6BA binary liquid crystal complexes , 2019, Journal of Molecular Structure.

[2]  Yu-Zhong Wang,et al.  Simultaneously Improved Flame Retardance and Ceramifiable Properties of Polymer-Based Composites via the Formed Crystalline Phase at High Temperature. , 2019, ACS applied materials & interfaces.

[3]  N. Ayrilmis,et al.  Surface characteristics of wood polypropylene nanocomposites reinforced with multi-walled carbon nanotubes , 2019, Composites Part B: Engineering.

[4]  G. Chinga-Carrasco,et al.  Bio-polyethylene reinforced with thermomechanical pulp fibers: Mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling , 2018, Composites Part B: Engineering.

[5]  Christopher J. Ellison,et al.  Polydopamine‐Graphene Oxide Flame Retardant Nanocoatings Applied via an Aqueous Liquid Crystalline Scaffold , 2018, Advanced Functional Materials.

[6]  Bernhard Schartel,et al.  Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy , 2018, Angewandte Chemie.

[7]  L. Feo,et al.  Plasma surface modification and bonding enhancement for bamboo composites , 2018 .

[8]  T. Yoshimura,et al.  Seventh-year durability evaluation of zinc borate incorporated wood-plastic composites and particleboard , 2018 .

[9]  B. Ramezanzadeh,et al.  Impact of size-controlled p-phenylenediamine (PPDA)-functionalized graphene oxide nanosheets on the GO-PPDA/Epoxy anti-corrosion, interfacial interactions and mechanical properties enhancement: Experimental and quantum mechanics investigations , 2018 .

[10]  Zhanhu Guo,et al.  Flame‐retardant rigid polyurethane foam with a phosphorus‐nitrogen single intumescent flame retardant , 2018 .

[11]  U. Gohs,et al.  Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene , 2017 .

[12]  S. Li,et al.  Flame retardancy and thermal degradation of halogen-free flame-retardant biobased polyurethane composites based on ammonium polyphosphate and aluminium hypophosphite , 2017 .

[13]  S. Bourbigot,et al.  Preparation of a Novel Intumescent Flame Retardant Based on Supramolecular Interactions and Its Application in Polyamide 11. , 2017, ACS applied materials & interfaces.

[14]  Jeannette M. García,et al.  Chemical recycling of waste plastics for new materials production , 2017 .

[15]  E. Yilmaz,et al.  Effects of silane modified minerals on mechanical, microstructural, thermal, and rheological properties of wood plastic composites , 2017 .

[16]  T. Hayat,et al.  Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. , 2017, Journal of hazardous materials.

[17]  Yu-Zhong Wang,et al.  An efficient halogen-free flame retardant for polyethylene: piperazinemodified ammonium polyphosphates with different structures , 2016, Chinese Journal of Polymer Science.

[18]  Mengbo Qian,et al.  Fabrication of Green Lignin-based Flame Retardants for Enhancing the Thermal and Fire Retardancy Properties of Polypropylene/Wood Composites , 2016 .

[19]  Rongjie Yang,et al.  Surface modification of ammonium polyphosphate with vinyltrimethoxysilane: Preparation, characterization, and its flame retardancy in polypropylene , 2015 .

[20]  Wenhua Chen,et al.  Interfacial carbonation for efficient flame retardance of glass fiber-reinforced polyamide 6 , 2015 .

[21]  Yu-Zhong Wang,et al.  An Effective Way To Flame-Retard Biocomposite with Ethanolamine Modified Ammonium Polyphosphate and Its Flame Retardant Mechanisms , 2015 .

[22]  Yang Li,et al.  Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. , 2015, ACS nano.

[23]  Mingzhu Pan,et al.  Synergistic effect of nano silicon dioxide and ammonium polyphosphate on flame retardancy of wood fiber–polyethylene composites , 2014 .

[24]  Yu-Zhong Wang,et al.  Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene , 2014 .

[25]  Yu-Zhong Wang,et al.  An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. , 2014, ACS applied materials & interfaces.

[26]  F. Pérez,et al.  Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants , 2014 .

[27]  Y. Mai,et al.  Recent developments in the fire retardancy of polymeric materials , 2013 .

[28]  Zhijian Zhang,et al.  An efficient interfacial flame-resistance mode to prepare glass fiber reinforced and flame retarded polyamide 6 with high performance , 2013 .

[29]  R. R. Devi,et al.  Effect of nanofillers on flame retardancy, chemical resistance, antibacterial properties and biodegradation of wood/styrene acrylonitrile co-polymer composites , 2013, Wood Science and Technology.

[30]  Jin Kuk Kim,et al.  Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood–fiber composites , 2012 .

[31]  Biplab K. Deka,et al.  Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite , 2011 .

[32]  Robert H. White,et al.  EVALUATION OF VARIOUS FIRE RETARDANTS FOR USE IN WOOD FLOUR-POLYETHYLENE COMPOSITES , 2010 .

[33]  Pingan Song,et al.  Effects of carbon nanotubes and its functionalization on the thermal and flammability properties of polypropylene/wood flour composites , 2010 .

[34]  Yu-Zhong Wang,et al.  Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin , 2008 .

[35]  Y. Barenholz,et al.  Electrostatics of PEGylated micelles and liposomes containing charged and neutral lipopolymers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[36]  Bin Li,et al.  Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE–wood-fibre composites , 2004 .

[37]  S. Bourbigot,et al.  XPS study of an intumescent coating: II. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent , 1997 .

[38]  S. Bourbigot,et al.  XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system , 1994 .

[39]  B. Meenan,et al.  X‐ray‐induced beam damage observed during x‐ray photoelectron spectroscopy (XPS) studies of palladium electrode ink materials , 1992 .

[40]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .