The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X

Aims. Our current knowledge of high-mass star formation is mainly based on follow-up studies of bright sources found by IRAS, and is thus biased against its earliest phases, inconspicuous at infrared wavelengths. We therefore started searching, in an unbiased way and in the closest high-mass star-forming complexes, for the high-mass analogs of low-mass pre-stellar cores and class 0 protostars. Methods.We have made an extensive 1.2 mm continuum mosaicing study of the Cygnus X molecular cloud complex using the MAMBO cameras at the IRAM 30 m telescope. The ~3°^(σ2) imaged areas cover all the high-column density (A_V ≥ 15 mag) clouds of this nearby (~1.7 kpc) cloud complex actively forming OB stars. We then compared our millimeter maps with mid-infrared images, and have made SiO(2-1) follow-up observations of the best candidate progenitors of high-mass stars. Results. Our complete study of Cygnus X with ~0.09 pc resolution provides, for the first time, an unbiased census of massive young stellar objects. We discover 129 massive dense cores (FWHM size ~0.1 pc, M_(1.2 mm) = 4-950 M_☉, volume-averaged density ~10^5 cm^(-3), among which ~42 are probable precursors of high-mass stars. A large fraction of the Cygnus X dense cores (2/3 of the sample) remain undetected by the MSX satellite, regardless of the mass range considered. Among the most massive (≥40 M_☉) cores, infrared-quiet objects are driving powerful outflows traced by SiO emission. Our study qualifies 17 cores as good candidates for hosting massive infrared-quiet protostars, while up to 25 cores potentially host high-luminosity infrared protostars. We fail to discover the high-mass analogs of pre-stellar dense cores (~0.1 pc, > 10^4 cm^-3)) in Cygnus X, but find several massive starless clumps (~0.8 pc, 7 × 10^3 cm^(-3)) that might be gravitationally bound. Conclusions. Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it gives the first statistical estimates of their lifetime. In contrast to what is found for low-mass class 0 and class I phases, the infrared-quiet protostellar phase of high-mass stars may last as long as their better-known high-luminosity infrared phase. The statistical lifetimes of high-mass protostars and pre-stellar cores (~3 × 10^4 yr and < 10^3 yr) in Cygnus X are one and two order(s) of magnitude smaller, respectively, than what is found in nearby, low-mass star-forming regions. We therefore propose that high-mass pre-stellar and protostellar cores are in a highly dynamic state, as expected in a molecular cloud where turbulent processes dominate.

[1]  N. Peretto,et al.  The initial conditions of star formation in the Ophiuchus main cloud: Kinematics of the protocluster condensations , , 2007, 0706.1535.

[2]  J. Richer,et al.  Warm SiO gas in molecular bullets associated with protostellar outflows , 2006, astro-ph/0610037.

[3]  Richard I. Klein,et al.  Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores , 2006, astro-ph/0609798.

[4]  HOBYS : the Herschel imaging survey of OB Young Stellar objects , 2007 .

[5]  S. Bontemps,et al.  A new view of the Cygnus X region - KOSMA $\mathsf{^{13}}$CO 2 $\to$ 1, 3 $\to$ 2, and $\mathsf{^{12}}$CO 3 $\to$ 2 imaging , 2006 .

[6]  M. Smith,et al.  WFCAM, Spitzer/IRAC and SCUBA observations of the massive star-forming region DR21/W75 - I. The collimated molecular jets , 2006, astro-ph/0610186.

[7]  J. Starck,et al.  Astronomical Image and Data Analysis (Astronomy and Astrophysics Library) , 2006 .

[8]  J. Fiege,et al.  A Cool Filament Crossing the Warm Protostar DR 21(OH): Geometry, Kinematics, Magnetic Vectors, and Pressure Balance , 2006 .

[9]  V. Minier,et al.  Millimetre continuum observations of southern massive star formation regions. I. SIMBA observations of cold cores , 2005, astro-ph/0506402.

[10]  D. Ward-Thompson,et al.  The initial conditions of isolated star formation — VI. SCUBA mapping of pre-stellar cores , 2005, astro-ph/0505190.

[11]  S. Bontemps,et al.  The earliest phases of massive star formation within entire molecular cloud complexes , 2005, Proceedings of the International Astronomical Union.

[12]  C. Wilson,et al.  High-Mass Star Formation. I. The Mass Distribution of Submillimeter Clumps in NGC 7538 , 2005, astro-ph/0503190.

[13]  Jongsoo Kim,et al.  Submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 14/09/00 THE LIFETIMES AND EVOLUTION OF MOLECULAR CLOUD CORES , 2004 .

[14]  J. Rathborne,et al.  Infrared Dark Clouds: Precursors to Star Clusters , 2004, astro-ph/0602246.

[15]  R. Booth,et al.  A general catalogue of 6.7-GHz methanol masers. I. Data. , 2004, astro-ph/0411564.

[16]  G. Garay,et al.  SIMBA survey of southern high-mass star forming regions. I. Physical parameters of the 1.2-mm/IRAS sources , 2004 .

[17]  J. Rho,et al.  DR 21: A Major Star Formation Site Revealed by Spitzer , 2004 .

[18]  Bochum,et al.  The giant molecular cloud associated with RCW 106: A 1.2 mm continuum mapping study , 2004, astro-ph/0406510.

[19]  L. Testi,et al.  The Nature of the Massive Young Stars in W75 N , 2003, astro-ph/0310418.

[20]  G. Sandell,et al.  Submillimeter Continuum Observations of NGC 7538 , 2004 .

[21]  M. Hanson,et al.  A Study of Cygnus OB2: Pointing the Way toward Finding Our Galaxy’s Super-Star Clusters , 2003, astro-ph/0307540.

[22]  N. Patel,et al.  Observations of Water Masers and Radio Continuum Emission in AFGL 2591 , 2003 .

[23]  F. Motte,et al.  From Massive Protostars to a Giant H II Region: Submillimeter Imaging of the Galactic Ministarburst W43 , 2002, astro-ph/0208519.

[24]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[25]  Yasuo Fukui,et al.  A Complete Search for Dense Cloud Cores in Taurus , 2002 .

[26]  Y. Shirley,et al.  The Physical Conditions for Massive Star Formation: Dust Continuum Maps and Modeling , 2002, astro-ph/0207322.

[27]  A. A. Kaas,et al.  Evolution of very small particles in the southern part of Orion B observed by ISOCAM , 2002 .

[28]  C. Kramer,et al.  A multiwavelength study of the S106 region I. Structure and dynamics of the molecular gas , 2002 .

[29]  H. Yorke,et al.  On the Formation of Massive Stars , 2002, astro-ph/0201041.

[30]  T. K. Sridharan,et al.  High-Mass Proto-Stellar Candidates - II : Density structure from dust continuum and CS emission , 2001, astro-ph/0110370.

[31]  K. Menten,et al.  High-Mass Protostellar Candidates. I. The Sample and Initial Results , 2001, astro-ph/0110363.

[32]  G. Fuller,et al.  SiO in G34.26: Outflows and shocks in a high mass star forming region , 2001 .

[33]  B. Aschenbach,et al.  The Cygnus superbubble revisited , 2001 .

[34]  John Conway,et al.  VLBI observations of 6.7 and 12.2 GHz methanol masers toward high mass star-forming regions - II. Tracing massive protostars , 2001 .

[35]  A. A. Kaas,et al.  ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster , 2001, astro-ph/0103373.

[36]  G. Tofani,et al.  The Arcetri Catalog of H2O maser sources: Update 2000 , 2001 .

[37]  C. Clarke,et al.  Competitive accretion in embedded stellar clusters , 2001, astro-ph/0102074.

[38]  Frédérique Motte,et al.  The circumstellar environment of low-mass protostars: A millimeter continuum mapping survey ? , 2001 .

[39]  M. Egan,et al.  Submillimeter Observations of Midcourse Space Experiment Galactic Infrared-Dark Clouds , 2000 .

[40]  K. Menten,et al.  Interstellar Hydroxyl Masers in the Galaxy. I. The VLA Survey , 2000 .

[41]  G. Blake,et al.  The Impact of the Massive Young Star GL 2591 on Its Circumstellar Material: Temperature, Density, and Velocity Structure , 1999, astro-ph/9905035.

[42]  F. Motte,et al.  The initial conditions of isolated star formation — III. Millimetre continuum mapping of pre-stellar cores , 1999 .

[43]  E. Churchwell,et al.  Massive Star Formation , 1999 .

[44]  S. Molinari,et al.  IRAS 23385+6053: A Prototype Massive Class 0 Object , 1998, astro-ph/9807251.

[45]  Michael D. Smith,et al.  ISO observations of molecular hydrogen in the DR 21 bipolar outflow , 1998 .

[46]  F. Helmich,et al.  Physical and chemical variations within the W3 star-forming region .2. The 345 GHz spectral line survey , 1997 .

[47]  R. Plume,et al.  Dense Gas and Star Formation: Characteristics of Cloud Cores Associated with Water Masers , 1996, astro-ph/9609061.

[48]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[49]  T. Henning,et al.  Dust opacities in dense regions , 1995 .

[50]  T. Graauw,et al.  Physical and chemical variations within the W3 star-forming region , 1995 .

[51]  Stuart A. Kurtz,et al.  Ultracompact H II Regions. II. New High-Resolution Radio Images , 1994 .

[52]  R. Hills,et al.  The molecular environment of S106 IR , 1993 .

[53]  C. M. Mountain,et al.  The excitation and kinematics of DR21(OH) from observations of CS , 1993 .

[54]  W. Gear,et al.  Dust emission associated with DR21 (OH) , 1993 .

[55]  F. Bertoldi,et al.  Pressure-confined clumps in magnetized molecular clouds , 1992 .

[56]  P. Thaddeus,et al.  A complete CO survey of the Cygnus X region , 1992 .

[57]  Robert H. Becker,et al.  A catalog of small-diameter radio sources in the Galactic plane , 1990 .

[58]  J. Stutzki,et al.  High spatial resolution isotopic CO and CS observations of M17 SW - The clumpy structure of the molecular cloud core , 1989 .

[59]  E. Churchwell,et al.  Massive stars embedded in molecular clouds - Their population and distribution in the galaxy , 1989 .

[60]  P. Friberg,et al.  Observations of SiO toward OMC-1 - a new outflow source 1. 5 arcmin south of Orion-KL , 1987 .

[61]  B. Burke,et al.  VLBI aperture synthesis observations of the OH maser source W75 N , 1981 .

[62]  W. Harris Toxic effects of aerosol propellants on the heart. , 1973, Archives of internal medicine.

[63]  D. Downes,et al.  Microwave Observations of the Cygnus X Region , 1966 .