Temperature–stress–strain trajectory modelling during thermo‐mechanical fatigue

The isothermal strain-life approach is the most commonly used approach for determining fatigue damage, particularly when yielding occurs. Computationally it is extremely fast and generally requires elastic finite element analyses only. Therefore, it has been adapted for variable temperatures. Local temperature-stress-strain behaviour is modelled with an operator of the Prandtl type. The hysteresis loops are supposed to be stabilized and no creep is considered. The consequences of reversal point filtering are analysed. The approach is finally compared to several thermo-mechanical fatigue tests and the Skelton model.