Prolonged 500 °C Demonstration of 4H-SiC JFET ICs With Two-Level Interconnect

This letter reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 h of stable electrical operation at 500°C in air ambient. These ICs are based on 4H-SiC junction field-effect transistor technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over ~1-μm scale vertical topology. Following initial burn-in, important circuit parameters remain stable within 15% for more than 1000 h of 500°C operational testing. These results advance the technology foundation for realizing long-term durable 500°C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.

[1]  L. Lanni,et al.  500 °C Bipolar SiC Linear Voltage Regulator , 2015, IEEE Transactions on Electron Devices.

[2]  Saul Rodriguez,et al.  A Monolithic, 500 °C Operational Amplifier in 4H-SiC Bipolar Technology , 2014, IEEE Electron Device Letters.

[3]  Glenn Beheim,et al.  Processing and Characterization of Thousand-Hour 500 °C Durable 4H-SiC JFET Integrated Circuits , 2016 .

[4]  Steven L. Garverick,et al.  Fully-monolithic, 600°C differential amplifiers in 6H-SiC JFET IC technology , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[5]  Roger D. Meredith,et al.  Fabrication and Testing of 6H-SiC JFETs for Prolonged 500 °C Operation in Air Ambient , 2008 .

[6]  Peter Alexandrov,et al.  Analog and Logic High Temperature Integrated Circuits based on SiC JFETs , 2014 .

[7]  M. Mehregany,et al.  550 $^{\circ}\hbox{C}$ Integrated Logic Circuits using 6H-SiC JFETs , 2012, IEEE Electron Device Letters.

[8]  Michael J. Krasowski,et al.  Processing and Prolonged 500 °C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect , 2016 .

[9]  Glenn Beheim,et al.  Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package , 2016 .

[10]  Liang Yin,et al.  500°C Silicon Carbide MOSFET-Based Integrated Circuits , 2014 .

[11]  Carl-Mikael Zetterling,et al.  ECL-Based SiC Logic Circuits for Extreme Temperatures , 2015 .

[12]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[13]  Michael J. Krasowski Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters , 2011 .

[14]  John W. Palmour,et al.  High temperature enhancement-mode NMOS and PMOS devices and circuits in 6H-SiC , 1995, 1995 53rd Annual Device Research Conference Digest.

[15]  Michael S. Shur,et al.  Novel AlInN/GaN integrated circuits operating up to 500 °C , 2014, 2014 44th European Solid State Device Research Conference (ESSDERC).

[16]  Glenn M. Beheim,et al.  Evidence of Processing Non-Idealities in 4H-SiC Integrated Circuits Fabricated with Two Levels of Metal Interconnect , 2016 .

[17]  Grigory Simin,et al.  500 °C operation of AlGaN/GaN and AlInN/GaN Integrated Circuits , 2014 .

[18]  Steven L. Garverick,et al.  Extreme temperature 6H‐SiC JFET integrated circuit technology , 2009 .

[19]  Carl-Mikael Zetterling,et al.  500$^{\circ}{\rm C}$ Bipolar Integrated OR/NOR Gate in 4H-SiC , 2013, IEEE Electron Device Letters.

[20]  Glenn Beheim,et al.  6H-SiC Transistor Integrated Circuits Demonstrating Prolonged Operation at 500 C , 2008 .

[21]  Liang-Yu Chen,et al.  4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K , 2015 .

[22]  Liang-Yu Chen,et al.  Stable Electrical Operation of 6H–SiC JFETs and ICs for Thousands of Hours at 500 $^{\circ}\hbox{C}$ , 2008, IEEE Electron Device Letters.

[23]  Carl-Mikael Zetterling,et al.  Design and Characterization of 500 °C Schmitt Trigger in 4H-SiC , 2015 .

[24]  Michael J. Krasowski Logic Gates Made of N-Channel JFETs and Epitaxial Resistors , 2008 .

[25]  A. Spetz,et al.  Investigation of Thermal Stability and Degradation Mechanisms in Ni-Based Ohmic Contacts to n-Type SiC for High-Temperature Gas Sensors , 2009 .

[26]  P. Neudeck,et al.  600 C Logic Gates Using Silicon Carbide JFET's , 2000 .

[27]  Dennis R. Young,et al.  PART I Introduction to Part I , 2015 .

[28]  Liang-Yu Chen,et al.  First-Order SPICE Modeling of Extreme-Temperature 4H-SiC JFET Integrated Circuits , 2016 .

[29]  Philip G. Neudeck,et al.  Experimental and Theoretical Study of 4H-SiC JFET Threshold Voltage Body Bias Effect from 25 °C to 500 °C , 2016 .