SURFACE LAYER ACCRETION IN CONVENTIONAL AND TRANSITIONAL DISKS DRIVEN BY FAR-ULTRAVIOLET IONIZATION

Whether protoplanetary disks accrete at observationally significant rates by the magnetorotational instability (MRI) depends on how well ionized they are. Disk surface layers ionized by stellar X-rays are susceptible to charge neutralization by small condensates, ranging from ∼0.01 μm sized grains to angstrom-sized polycyclic aromatic hydrocarbons (PAHs). Ion densities in X-ray-irradiated surfaces are so low that ambipolar diffusion weakens the MRI. Here we show that ionization by stellar far-ultraviolet (FUV) radiation enables full-blown MRI turbulence in disk surface layers. Far-UV ionization of atomic carbon and sulfur produces a plasma so dense that it is immune to ion recombination on grains and PAHs. The FUV-ionized layer, of thickness 0.01–0.1 g cm−2, behaves in the ideal magnetohydrodynamic limit and can accrete at observationally significant rates at radii ≳ 1–10 AU. Surface layer accretion driven by FUV ionization can reproduce the trend of increasing accretion rate with increasing hole size seen in transitional disks. At radii ≲1–10 AU, FUV-ionized surface layers cannot sustain the accretion rates generated at larger distance, and unless turbulent mixing of plasma can thicken the MRI-active layer, an additional means of transport is needed. In the case of transitional disks, it could be provided by planets.

[1]  Catherine Espaillat,et al.  TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.

[2]  D. Wilner,et al.  EMPIRICAL CONSTRAINTS ON TURBULENCE IN PROTOPLANETARY ACCRETION DISKS , 2010, 1011.3826.

[3]  E. Chiang,et al.  SURFACE LAYER ACCRETION IN TRANSITIONAL AND CONVENTIONAL DISKS: FROM POLYCYCLIC AROMATIC HYDROCARBONS TO PLANETS , 2010, 1009.4930.

[4]  B. Swift,et al.  TIME-VARIABLE ACCRETION IN THE TW Hya STAR/DISK SYSTEM , 2010, 1009.1657.

[5]  T. Prusti,et al.  A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES , 2010, 1008.2428.

[6]  S. Cazaux,et al.  ERRATUM: “H2 FORMATION ON GRAIN SURFACES” (2004, ApJ, 604, 222) , 2010 .

[7]  L. E. Kristensen,et al.  First results of the Herschel key program "Dust, Ice and Gas In Time" (DIGIT): Dust and gas spectroscopy of HD 100546 , 2010, 1005.3472.

[8]  D. M. Watson,et al.  UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS , 2010, 1005.2365.

[9]  N. Turner,et al.  DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING , 2009, 0911.1533.

[10]  A. Youdin,et al.  Forming Planetesimals in Solar and Extrasolar Nebulae , 2009, 0909.2652.

[11]  William J. Forrest,et al.  MID-INFRARED SPECTRA OF TRANSITIONAL DISKS IN THE CHAMAELEON I CLOUD , 2009 .

[12]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[13]  X. Bai,et al.  HEAT AND DUST IN ACTIVE LAYERS OF PROTOSTELLAR DISKS , 2009, 0904.1240.

[14]  L. Hartmann,et al.  A Slowly Accreting ~10 Myr-old Transitional Disk in Orion OB1a , 2008, 0810.4575.

[15]  L. Testi,et al.  Molecular hydrogen in the circumstellar environments of Herbig Ae/Be stars probed by FUSE , 2008, 0804.4761.

[16]  U. Gorti,et al.  Line Emission from Gas in Optically Thick Dust Disks around Young Stars , 2008, 0804.3381.

[17]  Lynne A. Hillenbrand,et al.  UV Excess Measures of Accretion onto Young Very Low Mass Stars and Brown Dwarfs , 2008, 0801.3525.

[18]  R. Meijerink,et al.  Atomic Diagnostics of X-Ray-Irradiated Protoplanetary Disks , 2007, 0712.0112.

[19]  K. H. Kim,et al.  The development of a protoplanetary disk from its natal envelope , 2007, Nature.

[20]  L. Hartmann,et al.  Probing the Dust and Gas in the Transitional Disk of CS Cha with Spitzer , 2007, 0707.0019.

[21]  E. Chiang,et al.  Inside-out evacuation of transitional protoplanetary discs by the magneto-rotational instability , 2007, 0706.1241.

[22]  D. Psaltis,et al.  Angular Momentum Transport in Accretion Disks: Scaling Laws in MRI-driven Turbulence , 2007, 0705.0352.

[23]  N. Calvet,et al.  An Inner Hole in the Disk around TW Hydrae Resolved in 7 mm Dust Emission , 2007, 0704.2422.

[24]  G. Blake,et al.  c2d Spitzer IRS Spectra of Disks around T Tauri Stars. III. [Ne II], [Fe I], and H2 Gas-Phase Lines , 2007, 0704.2305.

[25]  M. Wardle,et al.  Magnetic fields in protoplanetary disks , 2007, 0704.0970.

[26]  N. Turner,et al.  Turbulent Mixing and the Dead Zone in Protostellar Disks , 2006, astro-ph/0612552.

[27]  J. Najita,et al.  Neon Fine-Structure Line Emission by X-Ray Irradiated Protoplanetary Disks , 2006, astro-ph/0611094.

[28]  J. Augereau,et al.  C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features , 2006, astro-ph/0609157.

[29]  L. Hartmann,et al.  Why Do T Tauri Disks Accrete? , 2006, astro-ph/0605294.

[30]  R. Nelson,et al.  On the ionisation fraction in protoplanetary disks. II. The effect of turbulent mixing on gas-phase chemistry , 2005, astro-ph/0509553.

[31]  L. Hartmann,et al.  Disks in Transition in the Taurus Population: Spitzer IRS Spectra of GM Aurigae and DM Tauri , 2005 .

[32]  E. Feigelson,et al.  The Origin of T Tauri X-Ray Emission: New Insights from the Chandra Orion Ultradeep Project , 2005, astro-ph/0506526.

[33]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[34]  S. Inutsuka,et al.  Self-sustained Ionization and Vanishing Dead Zones in Protoplanetary Disks , 2005, astro-ph/0506131.

[35]  C. Clarke,et al.  Constraints on the ionizing flux emitted by T Tauri stars , 2005 .

[36]  L. Hartmann,et al.  Measuring Accretion in Young Substellar Objects: Approaching the Planetary Mass Regime , 2005, astro-ph/0502023.

[37]  L. Hartmann,et al.  The Mass Accretion Rates of Intermediate-Mass T Tauri Stars , 2004 .

[38]  S. Desch Linear Analysis of the Magnetorotational Instability, Including Ambipolar Diffusion, with Application to Protoplanetary Disks , 2004 .

[39]  T. Henning,et al.  Reduction of chemical networks. II. Analysis of the fractional ionisation in protoplanetary discs , 2004, astro-ph/0403555.

[40]  S. Balbus,et al.  Ambipolar diffusion in the magnetorotational instability , 2003, astro-ph/0309707.

[41]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[42]  J. Stone,et al.  The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability. I. Local Axisymmetric Simulations , 2002, astro-ph/0201179.

[43]  S. Balbus,et al.  Linear Analysis of the Hall Effect in Protostellar Disks , 2000, astro-ph/0010229.

[44]  G. Blake,et al.  Spectral Energy Distributions of Passive T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with Infrared Space Observatory LWS Observations , 2000, astro-ph/0009428.

[45]  J. Valenti,et al.  An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars , 2000 .

[46]  James M. Stone,et al.  The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks , 2000, astro-ph/0001164.

[47]  L. Hartmann,et al.  The Structure and Emission of the Accretion Shock in T Tauri Stars. II. The Ultraviolet-Continuum Emission , 1998, astro-ph/0008203.

[48]  Henrik Svensmark,et al.  Influence of Cosmic Rays on Earth's Climate , 1998 .

[49]  M. Wardle The Balbus-Hawley instability in weakly ionized discs , 1998, astro-ph/9809349.

[50]  P. Caselli,et al.  The Ionization Fraction in Dense Cloud Cores , 1998 .

[51]  J. Stone,et al.  Nonlinear Evolution of the Magnetorotational Instability in Ion-Neutral Disks , 1998, astro-ph/9802227.

[52]  J. Najita,et al.  X-Ray Ionization of Protoplanetary Disks , 1997 .

[53]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[54]  Nuria Calvet,et al.  Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation , 1994 .

[55]  O. Blaes,et al.  LOCAL SHEAR INSTABILITIES IN WEAKLY IONIZED, WEAKLY MAGNETIZED DISKS , 1994 .

[56]  R. Reedy Nuclide production by primary cosmic‐ray protons , 1987 .

[57]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[58]  B. Draine Magneto-Hydrodynamic Shock Waves in Molecular Clouds , 1983 .

[59]  S. Bowyer,et al.  On the opacity of the interstellar medium to ultrasoft X-rays and extreme-ultraviolet radiation. , 1974 .

[60]  Edwin E. Salpeter,et al.  THE INTERSTELLAR ABUNDANCE OF THE HYDROGEN MOLECULE. I. BASIC PROCESSES , 1963 .

[61]  P. Garcia Physical processes in circumstellar disks around young stars , 2011 .

[62]  J. M. Alacid,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel view of GAS in Protoplanetary Systems ( GASPS ) First comparisons with a large grid of models , 2010 .

[63]  G. Herczeg,et al.  The Effects of UV Continuum and Lyman α Radiation on the Chemical Equilibrium of T Tauri Disks , 2003 .

[64]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[65]  T. Millar,et al.  The UMIST Database for Astrochemistry 1995 , 1997 .

[66]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[67]  R. Gould Radiative recombination of complex ions , 1978 .

[68]  T. L. Stephens,et al.  DISCRETE ABSORPTION AND PHOTODISSOCIATION OF MOLECULAR HYDROGEN. , 1970 .