The fast wavelet transform on compact intervals as a tool in chemometrics. I. Mathematical background
暂无分享,去创建一个
K. Jetter | K. Jetter | U. Depczynski | K. Molt | A. Niemöller | U. Depczynski | K. Molt | A. Niemöller
[1] Jürgen Prestin,et al. Polynomial wavelets on the interval , 1996 .
[2] C. Chui,et al. Wavelets on a Bounded Interval , 1992 .
[3] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[4] H. Mhaskar,et al. On trigonometric wavelets , 1993 .
[5] Manfred Tasche. Polynomial Wavelets on [-1, 1] , 1995 .
[6] Günther Nürnberger,et al. Numerical Methods of Approximation Theory. , 1982 .
[7] Manfred Tasche,et al. On the Computation of Periodic Spline Wavelets , 1995 .
[8] Mladen Victor Wickerhauser,et al. Adaptive Wavelet-Analysis , 1996 .
[9] C. Chui,et al. Wavelets : theory, algorithms, and applications , 1994 .
[10] Matthias Holschneider,et al. Wavelets - an analysis tool , 1995, Oxford mathematical monographs.
[11] Manfred Tasche,et al. A Unified Approach to Periodic Wavelets , 1994 .
[12] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[13] Sankatha Prasad Singh,et al. Approximation Theory, Wavelets and Applications , 1995 .
[14] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[15] U. Depczynski,et al. Sturm–Liouville Wavelets , 1998 .