Development and Characterization of Nano-Al2O3, Cr2O3, and TiO2 Dispersed Mo Alloys Fabricated by Powder Metallurgy

[1]  Effect mechanism of oxide doping on the microstructure and mechanical properties of Mo–Y2O3 alloys , 2022, Materials Science and Engineering: A.

[2]  G. Sha,et al.  Ultrastrong nanocrystalline oxide-dispersion-strengthened ferritic alloy with exceptional thermal stability , 2021, Materials Science and Engineering: A.

[3]  R. Saha,et al.  Fabrication of MWCNTs reinforced iron metal matrix composite by powder metallurgy: Effects of wet and dry milling , 2021 .

[4]  W. Liew,et al.  A Short Review on the Phase Structures, Oxidation Kinetics, and Mechanical Properties of Complex Ti-Al Alloys , 2021, Materials.

[5]  T. Sun,et al.  Refined microstructure and enhanced mechanical properties in Mo-Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering , 2021 .

[6]  Zongqing Ma,et al.  Microstructure refinement and mechanical properties improvement in the W-Y2O3 alloys via optimized freeze-drying , 2021, International Journal of Refractory Metals and Hard Materials.

[7]  S. Lee,et al.  The effects of Y pre-alloying on the in-situ dispersoids of ODS CoCrFeMnNi high-entropy alloy , 2021 .

[8]  Zhang Min,et al.  Study on high temperature strengthening mechanism of ZrO2/Mo alloys , 2020 .

[9]  D. Schliephake,et al.  Creep of an oxidation resistant coated Mo-9Si-8B alloy , 2020, Intermetallics.

[10]  A. Sadoun,et al.  Effect of Al2O3 addition on hardness and wear behavior of Cu–Al2O3 electro-less coated Ag nanocomposite , 2020 .

[11]  Nanocrystalline Materials , 2020 .

[12]  T. Lampke,et al.  Microstructure and Sliding Wear Resistance of Plasma Sprayed Al2O3-Cr2O3-TiO2 Ternary Coatings from Blends of Single Oxides , 2020, Coatings.

[13]  Xiaoxin Zhang,et al.  Wear characteristics of Fe-based diamond composites with cerium oxide (CeO2) reinforcements , 2020 .

[14]  Wen-sheng Li,et al.  Effect of nano-CeO2 addition on the consolidation of W-5Ni-3Cu alloy by a two-step sintering process , 2019 .

[15]  Guo‐Hua Zhang,et al.  Nanostructured oxide dispersion strengthened Mo alloys from Mo nanopowder doping with oxide nanoparticles , 2019, Journal of Materials Research and Technology.

[16]  K. Chou,et al.  An industrially feasible pathway for preparation of Mo nanopowder and its sintering behavior , 2019, International Journal of Refractory Metals and Hard Materials.

[17]  Y. Yoo,et al.  Effects of Cr, W, and Mo on the High Temperature Oxidation of Ni-Based Superalloys , 2019, Materials.

[18]  Guojun Zhang,et al.  High-temperature oxidation response of Mo–Si–B composites with TiO2W/SiCW addition , 2019, Ceramics International.

[19]  Q. Gong,et al.  Microstructure and high-temperature mechanical properties of second-phase enhanced Mo-La2O3-ZrC alloys post-treated by cross rolling , 2019, Journal of Alloys and Compounds.

[20]  Rui-di Li,et al.  Synergistic effects of WC nanoparticles and MC nanoprecipitates on the mechanical and tribological properties of Fe40Mn40Cr10Co10 medium-entropy alloy , 2019, Journal of Materials Research and Technology.

[21]  Yue Wang,et al.  The superior thermal stability and tensile properties of hot rolled W-HfC alloys , 2019, International Journal of Refractory Metals and Hard Materials.

[22]  Jung hyo Park,et al.  Volume and size effects of intermetallic compounds on the high-temperature oxidation behavior of Mo-Si-B alloys , 2019, International Journal of Refractory Metals and Hard Materials.

[23]  M. Kramer,et al.  Oxidation resistance of a Mo-W-Si-B alloy at 1000–1300 °C: The effect of a multicomponent Mo-Si-B coating , 2019, Applied Surface Science.

[24]  B. S. Murty,et al.  Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys , 2019, Journal of Alloys and Compounds.

[25]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[26]  Shizhong Wei,et al.  Effect of nano-sized ZrO2 on high temperature performance of Mo-ZrO2 alloy , 2018, Journal of Alloys and Compounds.

[27]  Kuai-she Wang,et al.  Secondary phases formation in lanthanum-doped titanium-zirconium-molybdenum alloy , 2018, Journal of Alloys and Compounds.

[28]  Yuejun Liu,et al.  Sintering Behavior and Properties of Mo-Cu Composites , 2018, Advances in Materials Science and Engineering.

[29]  L. Qiang,et al.  Effect of nano-sized ZrO2 on the recrystallization of Mo alloy , 2018, Journal of Alloys and Compounds.

[30]  Rui Li,et al.  Strengthening mechanisms of Mo-La 2 O 3 alloys processed by solid-solid doping and vacuum hot-pressing sintering , 2018, Vacuum.

[31]  L. Ciupinski,et al.  Fabrication and characterization of nano-Y 2 O 3 dispersed W-Ni-Nb alloys , 2018 .

[32]  Yu Hao,et al.  Microstructure and performances of W–TiC–Y2O3 composites prepared by mechano-chemical and wet-chemical methods , 2018 .

[33]  A. Patra,et al.  Effect of nano Y2O3 dispersion on thermal, microstructure, mechanical and high temperature oxidation behavior of mechanically alloyed W-Ni-Mo-Ti , 2018 .

[34]  V. Vignal,et al.  Structure and corrosion behaviour of electrodeposited Co-Mo/TiO 2 nano-composite coatings , 2018 .

[35]  Shizhong Wei,et al.  Microstructure and high temperature deformation behavior of the Mo-ZrO2 alloys , 2017 .

[36]  D. Gaskell Introduction to the Thermodynamics of Materials , 2017 .

[37]  T. Laha,et al.  Fabrication and characterization of nano-Y2O3 dispersed W-Ni-Mo and W-Ni-Ti-Nb alloys by mechanical alloying and spark plasma sintering , 2017 .

[38]  A. Gusarov,et al.  Phase composition and microstructure of WC–Co alloys obtained by selective laser melting , 2017 .

[39]  Z. Fang,et al.  The study on low temperature sintering of nano-tungsten powders , 2016 .

[40]  M. Krüger,et al.  Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders , 2016 .

[41]  J. Panek,et al.  Structure Studies on Mechanically Alloyed Ni₅₀Ti_{50-x}Moₓ (x=10, 25, 40 at.%) Systems during Milling and after Annealing , 2016 .

[42]  Shizhong Wei,et al.  Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles , 2016 .

[43]  Chenhui Yang,et al.  Effect of MoO3 on microstructure and mechanical properties of (Ti,Mo)Al/Al2O3 composites by in situ reactive hot pressing , 2016 .

[44]  A. Dongare,et al.  Role of grain boundary character on oxygen and hydrogen segregation-induced embrittlement in polycrystalline Ni , 2016, Journal of Materials Science.

[45]  S. Allahkaram,et al.  Composition, characteristics and tribological behavior of Cr, Co–Cr and Co–Cr/TiO2 nano-composite coatings electrodeposited from trivalent chromium based baths , 2015 .

[46]  B. Liu,et al.  Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations , 2015 .

[47]  L. D. Arceo,et al.  Synthesis and characterization of a MoWC-WC-NiC nanocomposite via mechanical alloying and sintering , 2015 .

[48]  Yucheng Wu,et al.  Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles , 2015 .

[49]  Chunshui Huang,et al.  Milling media and alloying effects on synthesis and characteristics of mechanically alloyed ODS heavy tungsten alloys , 2014 .

[50]  E. Ma,et al.  Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. , 2013, Nature materials.

[51]  D. Schliephake,et al.  Effect of Ti (Macro-) Alloying on the High-Temperature Oxidation Behavior of Ternary Mo–Si–B Alloys at 820–1,300 °C , 2013, Oxidation of Metals.

[52]  Govind,et al.  Size and alloying induced changes in lattice constant, core, and valance band binding energy in Pd-Ag, Pd, and Ag nanoparticles: Effect of in-flight sintering temperature , 2012 .

[53]  Bilge Yildiz,et al.  Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies , 2012 .

[54]  HIGH POWER DIRECT DIODE LASER CLADDING OF STELLITE 6 +WC COATINGS , 2012 .

[55]  L. Gang,et al.  Microstructure and oxidation resistance behavior of lanthanum oxide-doped Mo–12Si–8.5B Alloys , 2012 .

[56]  W. J. Weber,et al.  Lattice distortions and oxygen vacancies produced in Au+- irradiated nanocrystalline cubic zirconia , 2011 .

[57]  Guojun Zhang,et al.  Influences of annealing temperature on microstructure and mechanical properties of MoLa 2O 3 , 2011 .

[58]  G. Hilmas,et al.  Densification Behavior and Microstructure Evolution of Hot-pressed HfB2 , 2011 .

[59]  P. Ray Microstructures and oxidation behavior of some Molybdenum based alloys , 2011 .

[60]  G. R. Odette,et al.  Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset , 2010 .

[61]  J. L. Johnson,et al.  Sintering of refractory metals , 2010 .

[62]  J. Greneche,et al.  X-ray diffraction and Mössbauer spectrometry studies of the mechanically alloyed Fe–6P–1.7C powders , 2009 .

[63]  S. Hong,et al.  Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process , 2009 .

[64]  M. Öveçoğlu,et al.  Effects of wet and dry milling conditions on properties of mechanically alloyed and sintered W–C and W–B4C–C composites , 2009 .

[65]  I. Samajdar,et al.  Densification and grain growth during isothermal sintering of Mo and mechanically alloyed Mo–TZM , 2009 .

[66]  Hua-ming Wang,et al.  Effect of MoO2 on high-temperature wear resistance of a laser melting deposited γ/NiMo alloy , 2009 .

[67]  C. Suryanarayana,et al.  Lattice contraction during amorphization by mechanical alloying , 2008 .

[68]  Arunava Gupta,et al.  Plasma enhanced chemical vapor deposition of Cr2O3 thin films using chromium hexacarbonyl (Cr(CO)6) precursor , 2008 .

[69]  Mohsen Mhadhbi,et al.  Characterization of Al and Fe nanosized powders synthesized by high energy mechanical milling , 2008 .

[70]  Michael D. Ries,et al.  Ceramics for Prosthetic Hip and Knee Joint Replacement , 2007 .

[71]  A. Volinsky,et al.  Interfacial Microstructure of Chromium Oxide Coatings , 2007 .

[72]  P. Patil,et al.  Structural and optical properties of electrodeposited molybdenum oxide thin films , 2006 .

[73]  B. Cockeram,et al.  The mechanical properties and fracture mechanisms of wrought low carbon arc cast (LCAC), molybdenum–0.5pct titanium–0.1pct zirconium (TZM), and oxide dispersion strengthened (ODS) molybdenum flat products , 2006 .

[74]  G. Kale,et al.  A study on preparation of Mo–30W alloy by aluminothermic co-reduction of mixed oxides , 2005 .

[75]  A. K. Suri,et al.  Preparation of TZM alloy by aluminothermic smelting and its characterization , 2005 .

[76]  Mohamed S. El-Genk,et al.  A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems , 2005 .

[77]  Veikko Lindroos,et al.  Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites , 2003 .

[78]  L. Lim,et al.  Effect of particle size distribution on sintering of agglomerate-free submicron alumina powder compacts , 2002 .

[79]  D. Tromans,et al.  Fracture toughness and surface energies of minerals: theoretical estimates for oxides, sulphides, silicates and halides , 2002 .

[80]  F. Stott High-temperature sliding wear of metals , 2002 .

[81]  L. Lim,et al.  Microstructural evolution during sintering of near-monosized agglomerate-free submicron alumina powder compacts , 2000 .

[82]  R. Buckman,et al.  Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum–rhenium alloys , 1999 .

[83]  D L Dorset,et al.  X-ray Diffraction: A Practical Approach , 1998, Microscopy and Microanalysis.

[84]  M. G. Norton,et al.  X-Ray Diffraction , 1998 .

[85]  W. Tysoe,et al.  The surface chemistry of propylene adsorbed on Mo(100), oxygen-covered Mo(100) and MoO2 , 1997 .

[86]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[87]  D. Johnson,et al.  Master Sintering Curve: A Practical Approach to Sintering , 1996 .

[88]  M. Kramer,et al.  Boron‐doped molybdenum silicides , 1996 .

[89]  F. Stott,et al.  The influence of alloying elements on the development and maintenance of protective scales , 1995 .

[90]  H. Evans Stress effects in high temperature oxidation of metals , 1995 .

[91]  S. Wayne,et al.  Wear Mechanisms in Thermally-Sprayed Mo-Based Coatings , 1994 .

[92]  B. Briscoe,et al.  Prediction of overall shape of sintered alumina compacts , 1994 .

[93]  R. German,et al.  Sintering atmosphere effects on tensile properties of heavy alloys , 1988 .

[94]  R. Ayer,et al.  The influence of yttrium on oxide scale growth and adherence , 1988 .

[95]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[96]  W. White,et al.  The oxide handbook , 1983 .

[97]  Anthony G. Evans,et al.  Crack deflection processes—I. Theory , 1983 .

[98]  H. Nagai,et al.  High-Temperature Oxidation of Ni–20Cr Alloys with Dispersion of Various Reactive Metal Oxides , 1981 .

[99]  P. S. Kislyi,et al.  Strength of sintered Mo-Al2O3 and Mo-ZrN composite materials , 1980 .

[100]  R. Balluffi Grain boundary structure and properties , 1979 .

[101]  A. Zaitsev,et al.  Oxidation of molybdenum and molybdenum-tungsten alloys , 1976 .

[102]  J. S. Benjamin,et al.  The mechanism of mechanical alloying , 1974 .

[103]  W. R. Witzke,et al.  Mechanical properties of electron-beam-melted molybdenum and dilute Mo-Re alloys , 1973 .

[104]  J. K. Lancaster,et al.  The influence of substrate hardness on the formation and endurance of molybdenum disulphide films , 1967 .

[105]  E. A. Gulbransen,et al.  Oxidation of Molybdenum 550° to 1700°C , 1963 .