Direct observation of interlocked domain walls in hexagonal RMnO3 (R = Tm, Lu)

Using state-of-the-art aberration-corrected annular-bright-field and high-angle annular-dark-field scanning transmission electron microscopy, we investigated domain wall structures in multiferroic hexagonal TmMnO3 and LuMnO3 ceramics at the atomic scale. Two types of 180 degrees. domain walls (DWs), i.e., the transverse and the longitudinal DWs with uniform displacements of a/3 and 2a/3, respectively, were identified along the b direction, which is in agreement with the interlock between the ferroelectric and structural translation domain walls that had been predicted previously. Across the domain wall the arrangement of MnO5 polyhedra was not found to be inversed, indicating that (i) it has negligible effects on the polarization and (ii) the structures of the neighbor domains with opposite polarizations are not exactly the same. These wall structures are different from the polarization inversion in conventional ferroelectrics and may be used to explain the unusual transport properties and magnetoelectic effects.