Flow and transport in channels with submerged vegetation

This paper reviews recent work on flow and transport in channels with submerged vegetation, including discussions of turbulence structure, mean velocity profiles, and dispersion. For submerged canopies of sufficient density, the dominant characteristic of the flow is the generation of a shear-layer at the top of the canopy. The shear-layer generates coherent vortices by Kelvin-Helmholtz (KH) instability. These vortices control the vertical exchange of mass and momentum, influencing both the mean velocity profile, as well as the turbulent diffusivity. For flexible canopies, the passage of the KH vortices generates a progressive wave along the canopy interface, termed monami. The KH vortices formed at the top of the canopy penetrate a distance δe into the canopy. This penetration scale segregates the canopy into an upper layer of rapid transport and a lower layer of slow transport. Flushing of the upper canopy is enhanced by the energetic shear-scale vortices. In the lower layer turbulence is limited to length-scales set by the stem geometry, and the resulting transport is significantly slower than that of the upper layer.

[1]  Heidi Nepf,et al.  A vortex‐based model of velocity and shear stress in a partially vegetated shallow channel , 2008 .

[2]  Marco Ghisalberti,et al.  Mass Transport in Vegetated Shear Flows , 2005 .

[3]  I. Wygnanski,et al.  The two-dimensional mixing region , 1970, Journal of Fluid Mechanics.

[4]  G. Katul,et al.  Momentum Transfer and Turbulent Kinetic Energy Budgets within a Dense Model Canopy , 2004 .

[5]  George M. Hornberger,et al.  A mixing layer theory for flow resistance in shallow streams , 2002 .

[6]  N. Afgan,et al.  Transfer processes in the plant environment , 1975 .

[7]  Andreas Dittrich,et al.  Velocity Distribution in the Roughness Layer of Rough-Bed Flows , 2004 .

[8]  Nicholas Kouwen,et al.  FLEXIBLE ROUGHNESS IN OPEN CHANNELS , 1973 .

[9]  Vladimir Nikora,et al.  Double-Averaging Concept for Rough-Bed Open-Channel and Overland Flows: Theoretical Background , 2007 .

[10]  S. Chikwendu,et al.  Slow-zone model for longitudinal dispersion in two-dimensional shear flows , 1985, Journal of Fluid Mechanics.

[11]  R. Shaw,et al.  Three-Dimensional Scalar Microfront Systems in a Large-Eddy Simulation of Vegetation Canopy Flow , 2004 .

[12]  E. Wolanski,et al.  Currents and Sediment Transport in Mangrove Forests , 1997 .

[13]  J. K. Foss,et al.  Phase decorrelation of coherent structures in a free shear layer , 1991, Journal of Fluid Mechanics.

[14]  M. Schulz,et al.  The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). , 2003, Water research.

[15]  F. Short,et al.  Hydrodynamically induced synchronous waving of seagrasses: ‘monami’ and its possible effects on larval mussel settlement , 1996 .

[16]  Timothy R. Oke,et al.  Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form , 1999 .

[17]  A. Thom Momentum absorption by vegetation , 1971 .

[18]  D. Reed,et al.  Hydrodynamics and Sediment Transport Through Tidal Marsh Canopies , 2002 .

[19]  J. Finnigan Turbulence in plant canopies , 2000 .

[20]  A. Roshko,et al.  On density effects and large structure in turbulent mixing layers , 1974, Journal of Fluid Mechanics.

[21]  M. Luther,et al.  Flow hydrodynamics in tidal marsh canopies , 1995 .

[22]  The role of the submergent macrophyte Triglochin huegelii in domestic greywater treatment , 1999 .

[23]  Marco Ghisalberti,et al.  Model and laboratory study of dispersion in flows with submerged vegetation , 2007 .

[24]  Andrew M. Folkard,et al.  Hydrodynamics of model Posidonia oceanica patches in shallow water , 2005 .

[25]  M. Raupach Drag and drag partition on rough surfaces , 1992 .

[26]  P. Viaene,et al.  Ecological management of aquatic plants: effects in lowland streams , 2006, Hydrobiologia.

[27]  M. Abdelrhman Effect of eelgrass Zostera marina canopies on flow and transport , 2003 .

[28]  G. Ciraolo,et al.  Flow resistance of Posidonia oceanica in shallow water , 2006 .

[29]  H. Nepf,et al.  Longitudinal dispersion in vegetated channels , 2006 .

[30]  E. Prepas,et al.  Nutrient dynamics in riverbeds: The impact of sewage effluent and aquatic macrophytes , 1994 .

[31]  A. Ōkubo,et al.  Reduced mixing in a marine macrophyte canopy , 1993 .

[32]  Fu‐Chun Wu,et al.  Variation of Roughness Coefficients for Unsubmerged and Submerged Vegetation , 1999 .

[33]  Enrique R. Vivoni,et al.  Flow structure in depth-limited, vegetated flow , 2000 .

[34]  Paul L. Knutson,et al.  Wave damping inSpartinaalterniflora marshes , 1982, Wetlands.

[35]  J. Finnigan,et al.  Turbulence in Waving Wheat , 1979 .

[36]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[37]  Catherine Wilson,et al.  Open Channel Flow through Different Forms of Submerged Flexible Vegetation , 2003 .

[38]  Yukie Tanino,et al.  Lateral dispersion in random cylinder arrays at high Reynolds number , 2008, Journal of Fluid Mechanics.

[39]  Akira Sase,et al.  Drag force due to vegetation in mangrove swamps , 1997 .

[40]  G. Katul,et al.  A Note On The Contribution Of Dispersive Fluxes To Momentum Transfer Within Canopies , 2004 .

[41]  A. Thom,et al.  Turbulence in and above Plant Canopies , 1981 .

[42]  Erich J. Plate,et al.  Modeling of Velocity Distributions Inside and Above Tall Crops. , 1965 .

[43]  Marco Ghisalberti,et al.  The Structure of the Shear Layer in Flows over Rigid and Flexible Canopies , 2006 .

[44]  H. Nepf,et al.  Mixing layers and coherent structures in vegetated aquatic flows , 2002 .

[45]  T. Tsujimoto Fluvial processes in streams with vegetation , 1999 .

[46]  T. Day,et al.  Longitudinal dispersion in natural channels , 1975 .

[47]  Vladimir Nikora,et al.  Zero-plane displacement for rough-bed open-channel flows. , 2002 .

[48]  Anne F. Lightbody,et al.  Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morphology , 2006 .

[49]  M. Raupach,et al.  Averaging procedures for flow within vegetation canopies , 1982 .

[50]  Heidi Nepf,et al.  Scalar transport in random cylinder arrays at moderate Reynolds number , 2003, Journal of Fluid Mechanics.

[51]  J. Finnigan,et al.  Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy , 1996 .

[52]  W. Judson Kenworthy,et al.  Effects of current on photosynthesis and distribution of seagrasses , 1987 .

[53]  J. Finnigan,et al.  Atmospheric Boundary Layer Flows: Their Structure and Measurement , 1994 .

[54]  P. Champion,et al.  The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream , 1999, Hydrobiologia.

[55]  Luca Ridolfi,et al.  The Effect of Vegetation Density on Canopy Sub-Layer Turbulence , 2004 .

[56]  F. D. Shields,et al.  River Habitat Quality from River Velocities Measured Using Acoustic Doppler Current Profiler , 2005, Environmental management.

[57]  James E. Saiers,et al.  Solute transport and storage mechanisms in wetlands of the Everglades, south Florida , 2005 .

[58]  R. Chevray,et al.  Vortex dynamics in a plane, moderate-Reynolds-number shear layer , 1990, Journal of Fluid Mechanics.

[59]  M. J. Dwyer,et al.  Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy , 1997 .

[60]  Manoochehr Koochesfahani,et al.  Particle streak velocity field measurements in a two­ dimensional mixing layer , 1981 .

[61]  Ian R. Wood,et al.  Longitudinal Dispersion with Dead Zones , 1977 .

[62]  K. Sand‐Jensen,et al.  Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams , 1998 .

[63]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[64]  J. Teal,et al.  The Nature of Growth Forms in the Salt Marsh Grass Spartina alterniflora , 1978, The American Naturalist.

[65]  J. Finnigan Turbulence in Waving Wheat , 1979 .

[66]  F. Triska,et al.  Retention and Transport of Nutrients in a Third‐Order Stream: Channel Processes , 1989 .

[67]  Syunsuke Ikeda,et al.  Three-Dimensional Organized Vortices above Flexible Water Plants , 1996 .

[68]  Anne F. Lightbody,et al.  Prediction of velocity profiles and longitudinal dispersion in salt marsh vegetation , 2006 .

[69]  Michael R. Raupach,et al.  Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index , 1994 .

[70]  Yukie Tanino,et al.  Laboratory Investigation of Mean Drag in a Random Array of Rigid, Emergent Cylinders , 2008 .

[71]  Marco Ghisalberti,et al.  Retention time and dispersion associated with submerged aquatic canopies , 2007 .

[72]  Fabián López,et al.  open‐channel flow through simulated vegetation: Suspended sediment transport modeling , 1998 .

[73]  Ronald Smith A delay-diffusion description for contaminant dispersion , 1981, Journal of Fluid Mechanics.

[74]  Vito Ferro,et al.  Flow Velocity Measurements in Vegetated Channels , 2002 .

[75]  H. Nepf Drag, turbulence, and diffusion in flow through emergent vegetation , 1999 .

[76]  N. Kouwen,et al.  Modern approach to design of grassed channels , 1992 .

[77]  M. Ghisalberti Momentum and scalar transport in vegetated shear flows , 2005 .

[78]  F. Browand,et al.  Vortex pairing : the mechanism of turbulent mixing-layer growth at moderate Reynolds number , 1974, Journal of Fluid Mechanics.

[79]  D. Harper,et al.  The habitat-scale ecohydraulics of rivers , 2000 .

[80]  John D. Wilson,et al.  A second-order closure model for flow through vegetation , 1988 .