ALMA resolves the hourglass magnetic field in G31.41+0.31

Context. Submillimeter Array (SMA) 870 μm polarization observations of the hot molecular core G31.41+0.31 revealed one of the clearest examples up to date of an hourglass-shaped magnetic field morphology in a high-mass star-forming region. Aims. To better establish the role that the magnetic field plays in the collapse of G31.41+0.31, we carried out Atacama Large Millimeter/ submillimeter Array (ALMA) observations of the polarized dust continuum emission at 1.3 mm with an angular resolution four times higher than that of the previous (sub)millimeter observations to achieve an unprecedented image of the magnetic field morphology. Methods. We used ALMA to perform full polarization observations at 233 GHz (Band 6). The resulting synthesized beam is 0′′.28×0′′.20 which, at the distance of the source, corresponds to a spatial resolution of ~875 au. Results. The observations resolve the structure of the magnetic field in G31.41+0.31 and allow us to study the field in detail. The polarized emission in the Main core of G31.41+0.41is successfully fit with a semi-analytical magnetostatic model of a toroid supported by magnetic fields. The best fit model suggests that the magnetic field is well represented by a poloidal field with a possible contribution of a toroidal component of ~10% of the poloidal component, oriented southeast to northwest at approximately −44° and with an inclination of approximately −45°. The magnetic field is oriented perpendicular to the northeast to southwest velocity gradient detected in this core on scales from 103 to 104 au. This supports the hypothesis that the velocity gradient is due to rotation of the core and suggests that such a rotation has little effect on the magnetic field. The strength of the magnetic field estimated in the central region of the core with the Davis–Chandrasekhar-Fermi method is ~8–13 mG and implies that the mass-to-flux ratio in this region is slightly supercritical. Conclusions. The magnetic field in G31.41+0.31 maintains an hourglass-shaped morphology down to scales of <1000 au. Despite the magnetic field being important in G31.41+0.31, it is not enough to prevent fragmentation and collapse of the core, as demonstrated by the presence of at least four sources embedded in the center of the core.

[1]  Analysis and test of the central-blue-spot infall hallmark , 2019, Astronomy & Astrophysics.

[2]  Qizhou Zhang,et al.  Interferometric Observations of Magnetic Fields in Forming Stars , 2019, Front. Astron. Space Sci..

[3]  Zhi-Yun Li,et al.  Highly Ordered and Pinched Magnetic Fields in the Class 0 Protobinary System L1448 IRS 2 , 2018, The Astrophysical Journal.

[4]  F. Ménard,et al.  Submillimetre dust polarization and opacity in the HD163296 protoplanetary ring system , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[5]  Francesca Bacciotti,et al.  ALMA Observations of Polarized Emission toward the CW Tau and DG Tau Protoplanetary Disks: Constraints on Dust Grain Growth and Settling , 2018, The Astrophysical Journal.

[6]  P. Caselli,et al.  Magnetic field in a young circumbinary disk , 2018, Astronomy & Astrophysics.

[7]  Zhi-Yun Li,et al.  ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk , 2018, The Astrophysical Journal.

[8]  T. Henning,et al.  Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623 , 2018, The Astrophysical Journal.

[9]  Qizhou Zhang,et al.  SMA observations of polarized dust emission in solar-type Class 0 protostars: Magnetic field properties at envelope scales , 2018, Astronomy & Astrophysics.

[10]  H Germany,et al.  Cosmic-ray ionisation in circumstellar discs , 2018, Astronomy & Astrophysics.

[11]  I. Gregorio-Monsalvo,et al.  Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80–81 Radio Jet , 2018, 1803.06165.

[12]  Heidelberg,et al.  Accelerating infall and rotational spin-up in the hot molecular core G31.41+0.31 , 2018, Astronomy & Astrophysics.

[13]  P. Hennebelle,et al.  Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission , 2018, 1803.00028.

[14]  P. Koch,et al.  MAGNETIC FIELDS AND MASSIVE STAR FORMATION , 2014, Proceedings of the International Astronomical Union.

[15]  Martin Houde,et al.  ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1 , 2017, 1707.03827.

[16]  A. Kataoka,et al.  The Evidence of Radio Polarization Induced by the Radiative Grain Alignment and Self-scattering of Dust Grains in a Protoplanetary Disk , 2017, 1707.01612.

[17]  A. Goodman,et al.  Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation , 2017, 1706.03806.

[18]  P. Koch,et al.  Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V , 2017, 1706.03534.

[19]  R. Cesaroni,et al.  Formation of ethylene glycol and other complex organic molecules in star-forming regions , 2016, 1608.07491.

[20]  Zhi-Yun Li,et al.  INTERFEROMETRIC MAPPING OF MAGNETIC FIELDS: THE ALMA VIEW OF THE MASSIVE STAR-FORMING CLUMP W43-MM1 , 2016, 1605.08037.

[21]  P. Caselli,et al.  Protostellar disc formation enabled by removal of small dust grains , 2016, 1602.02729.

[22]  Qizhou Zhang,et al.  HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS , 2016, 1601.05229.

[23]  J. Koehler The Origin Of Stars And Planetary Systems , 2016 .

[24]  John E. Vaillancourt,et al.  Interstellar Dust Grain Alignment , 2015 .

[25]  H. Shibai,et al.  MILLIMETER-WAVE POLARIZATION OF PROTOPLANETARY DISKS DUE TO DUST SCATTERING , 2015, 1504.04812.

[26]  P. K. Leung,et al.  Self-similar fragmentation regulated by magnetic fields in a region forming massive stars , 2015, Nature.

[27]  C. Hull,et al.  TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527 , 2014, 1411.4913.

[28]  P. Koch,et al.  THE IMPORTANCE OF THE MAGNETIC FIELD FROM AN SMA–CSO-COMBINED SAMPLE OF STAR-FORMING REGIONS , 2014, 1411.3830.

[29]  K. Menten,et al.  SUBMILLIMETER ARRAY OBSERVATIONS OF MAGNETIC FIELDS IN G240.31+0.07: AN HOURGLASS IN A MASSIVE CLUSTER-FORMING CORE , 2014, 1409.5608.

[30]  Cea,et al.  The role of cosmic rays on magnetic field diffusion and the formation of protostellar discs , 2014, 1408.5901.

[31]  Qizhou Zhang,et al.  Shaping a high-mass star-forming cluster through stellar feedback - The case of the NGC 7538 IRS 1−3 complex , 2014, 1405.6742.

[32]  G. Anglada,et al.  Signatures of infall motions in the images of the molecular emission of G31.41+0.31 hot molecular core , 2013, 1311.2206.

[33]  Cea,et al.  Cosmic-ray ionisation in collapsing clouds , 2013, 1310.2158.

[34]  P. Koch,et al.  DR 21(OH): A HIGHLY FRAGMENTED, MAGNETIZED, TURBULENT DENSE CORE , 2013, 1305.6509.

[35]  L. Mundy,et al.  MISALIGNMENT OF MAGNETIC FIELDS AND OUTFLOWS IN PROTOSTELLAR CORES , 2012, 1212.0540.

[36]  P. Hennebelle,et al.  Adaptable radiative transfer innovations for submillimetre telescopes (ARTIST) - Dust polarisation module (DustPol) , 2012, 1204.6668.

[37]  O. Arcetri,et al.  Comparing star formation models with interferometric observations of the protostar NGC 1333 IRAS 4A - I. Magnetohydrodynamic collapse models , 2011, 1109.6251.

[38]  Astronomy,et al.  Dissecting a hot molecular core: the case of G31.41+0.31 , 2011, 1107.2849.

[39]  Spain.,et al.  Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores , 2011, 1104.5445.

[40]  S. Lumsden,et al.  THE RMS SURVEY: THE LUMINOSITY FUNCTIONS AND TIMESCALES OF MASSIVE YOUNG STELLAR OBJECTS AND COMPACT H ii REGIONS , 2011, 1102.4702.

[41]  B. Matthews,et al.  MAGNETIC FIELD STRUCTURE AROUND LOW-MASS CLASS 0 PROTOSTARS: B335, L1527, AND IC348-SMM2 , 2011, 1103.4370.

[42]  M. R. Hogerheijde,et al.  LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths , 2010, 1008.1492.

[43]  Astrophysics,et al.  HIGH-ANGULAR RESOLUTION DUST POLARIZATION MEASUREMENTS: SHAPED B-FIELD LINES IN THE MASSIVE STAR-FORMING REGION ORION BN/KL , 2010, 1006.2957.

[44]  R. Cesaroni,et al.  The structure of hot molecular cores over 1000 AU , 2010 .

[45]  A. Goodman,et al.  ANCHORING MAGNETIC FIELD IN TURBULENT MOLECULAR CLOUDS , 2009, 0908.1549.

[46]  Qizhou Zhang,et al.  Magnetic Fields in the Formation of Massive Stars , 2009, Science.

[47]  A. Lazarian,et al.  GRAIN ALIGNMENT INDUCED BY RADIATIVE TORQUES: EFFECTS OF INTERNAL RELAXATION OF ENERGY AND COMPLEX RADIATION FIELD , 2008, 0812.4576.

[48]  P. Koch,et al.  EVOLUTION OF MAGNETIC FIELDS IN HIGH MASS STAR FORMATION: SUBMILLIMETER ARRAY DUST POLARIZATION IMAGE OF THE ULTRACOMPACT H ii REGION G5.89−0.39 , 2008, 0812.3444.

[49]  G. Anglada,et al.  COLLAPSING HOT MOLECULAR CORES: A MODEL FOR THE DUST SPECTRUM AND AMMONIA LINE EMISSION OF THE G31.41+0.31 HOT CORE , 2008, 0811.4096.

[50]  J. Dotson,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. I , 2009 .

[51]  Jessie L. Dotson,et al.  DISPERSION OF MAGNETIC FIELDS IN MOLECULAR CLOUDS. II. , 2008, 0909.5227.

[52]  J. Girart,et al.  Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A , 2008, 0809.5278.

[53]  L. Olmi,et al.  Thermal Methanol Observations of the Outflow from the G31.41+0.31 Hot Molecular Core , 2008 .

[54]  Zhi-Yun Li,et al.  Magnetic Braking and Protostellar Disk Formation: The Ideal MHD Limit , 2007, 0709.0445.

[55]  Ramprasad Rao,et al.  Magnetic Fields in the Formation of Sun-Like Stars , 2006, Science.

[56]  F. Shu,et al.  Gravitational Collapse of Magnetized Clouds. I. Ideal Magnetohydrodynamic Accretion Flow , 2006, astro-ph/0604573.

[57]  John E. Vaillancourt,et al.  Placing Confidence Limits on Polarization Measurements , 2006, astro-ph/0603110.

[58]  Pasadena,et al.  A detailed study of the rotating toroids in G31.41+0.31 and G24.78+0.08 , 2005, astro-ph/0502071.

[59]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[60]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[61]  J. Girart,et al.  Detection of Polarized CO Emission from the Molecular Outflow in NGC 1333 IRAS 4A , 1999, The Astrophysical journal.

[62]  E. Ostriker,et al.  Low-Mass Star Formation: Theory , 1999 .

[63]  Telemachos Ch. Mouschovias,et al.  Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .

[64]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[65]  D. A. Schleuning,et al.  Far-infrared and Submillimeter Polarization of OMC-1: Evidence for Magnetically Regulated Star Formation , 1997 .

[66]  Frank H. Shu,et al.  Magnetized Singular Isothermal Toroids , 1996 .

[67]  F. Shu,et al.  Collapse of magnetized molecular cloud cores. I: Semianalytical solution , 1993 .

[68]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[69]  T. Mouschovias,et al.  Ambipolar diffusion and star formation : formation and contraction of axisymmetric cloud cores. II: Results , 1993 .

[70]  S. Basu,et al.  Magnetic braking, ambipolar diffusion, and the formation of cloud cores and protostars. I. Axisymmetric solutions , 1994 .

[71]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .

[72]  V. Ambartsumian On the Origin of Stars , 1954 .

[73]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[74]  L. Davis,et al.  The Strength of Interstellar Magnetic Fields , 1951 .