Tracing Field‐Coherent Quad Layouts

Given a cross field over a triangulated surface we present a practical and robust method to compute a field aligned coarse quad layout over the surface. The method works directly on a triangle mesh without requiring any parametrization and it is based on a new technique for tracing field‐coherent geodesic paths directly on a triangle mesh, and on a new relaxed formulation of a binary LP problem, which allows us to extract both conforming quad layouts and coarser layouts containing t‐junctions. Our method is easy to implement, very robust, and, being directly based on the input cross field, it is able to generate better aligned layouts, even with complicated fields containing many singularities. We show results on a number of datasets and comparisons with state‐of‐the‐art methods.

[1]  Dmitry Sokolov,et al.  Robust Polylines Tracing for N-Symmetry Direction Field on Triangulated Surfaces , 2013, ACM Trans. Graph..

[2]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[3]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[4]  Tao Ju,et al.  Anisotropic geodesics for live‐wire mesh segmentation , 2014, Comput. Graph. Forum.

[5]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[6]  Aaron Hertzmann,et al.  Illustrating smooth surfaces , 2000, SIGGRAPH.

[7]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[8]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[9]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[10]  Hiromasa Suzuki,et al.  Approximate shortest path on a polyhedral surface based on selective refinement of the discrete graph and its applications , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[11]  Daniele Panozzo,et al.  Simple quad domains for field aligned mesh parametrization , 2011, ACM Trans. Graph..

[12]  Kenshi Takayama,et al.  Data-driven interactive quadrangulation , 2015, ACM Trans. Graph..

[13]  Jingyi Jin,et al.  Parameterization of triangle meshes over quadrilateral domains , 2004, SGP '04.

[14]  Olga Sorkine-Hornung,et al.  Global parametrization of range image sets , 2011, SA '11.

[15]  Jun-Hai Yong,et al.  Automatic Quad Patch Layout Extraction for Quadrilateral Meshes , 2015 .

[16]  Hiromasa Suzuki,et al.  Approximate shortest path on a polyhedral surface and its applications , 2001, Comput. Aided Des..

[17]  Keenan Crane,et al.  Rectangular multi-chart geometry images , 2006, SGP '06.

[18]  Elaine Cohen,et al.  Semi‐regular Quadrilateral‐only Remeshing from Simplified Base Domains , 2009, Comput. Graph. Forum.

[19]  Konrad Polthier,et al.  Perfect Matching Quad Layouts for Manifold Meshes , 2015, SGP '15.

[20]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[21]  Kenshi Takayama,et al.  Sketch-based generation and editing of quad meshes , 2013, ACM Trans. Graph..

[22]  David Bommes,et al.  Global Structure Optimization of Quadrilateral Meshes , 2011, Comput. Graph. Forum.

[23]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[24]  Marcel Campen,et al.  Dual strip weaving , 2014, ACM Trans. Graph..

[25]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[27]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[28]  David Bommes,et al.  Quantized global parametrization , 2015, ACM Trans. Graph..

[29]  Olga Sorkine-Hornung,et al.  Integrable PolyVector fields , 2015, ACM Trans. Graph..

[30]  Marcel Campen,et al.  Practical Anisotropic Geodesy , 2013, SGP '13.

[31]  O. Sorkine-Hornung,et al.  Statics Aware Grid Shells , 2015, Comput. Graph. Forum.

[32]  Bert Jüttler,et al.  Computation of rotation minimizing frames , 2008, TOGS.

[33]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[34]  Dmitry Sokolov,et al.  Tracing cross-free polylines oriented by a N-symmetry direction field on triangulated surfaces , 2013, ArXiv.

[35]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[36]  David Bommes,et al.  Dual loops meshing , 2012, ACM Trans. Graph..

[37]  Jörg-Rüdiger Sack,et al.  Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.

[38]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, SIGGRAPH 2010.

[39]  Ligang Liu,et al.  B‐Mesh: A Modeling System for Base Meshes of 3D Articulated Shapes , 2010, Comput. Graph. Forum.