Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development Running title: Genome-wide association study of LV phenotypes

Nay Aung, MBBS, MRCP1,2,3#; Jose D Vargas, MD, DPhil4#; Chaojie Yang, MSc5; Claudia P Cabrera, PhD6; Helen R Warren, PhD1,2; Kenneth Fung, MBBS, MRCP1,2,3; Evan Tzanis, PhD6; Michael R Barnes, PhD6; Jerome I Rotter, MD7; Kent D Taylor, MD7; Ani W Manichaikul, PhD5; Joao AC Lima, MD8; David A Bluemke, MD9; Stefan K Piechnik, D.Sc10; Stefan Neubauer, MD, FRCP, FMedSci10; Patricia B Munroe, PhD1,2#*; Steffen E Petersen, MD, DPhil, MPH, FRCP1,2,3#*

[1]  P. Elliott,et al.  Dilated Cardiomyopathy Due to BLC2-Associated Athanogene 3 (BAG3) Mutations. , 2018, Journal of the American College of Cardiology.

[2]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[3]  Angharad M Roberts,et al.  Phenotype and Clinical Outcomes of Titin Cardiomyopathy , 2017, Journal of the American College of Cardiology.

[4]  Roberta B. Nowak,et al.  HSPB7 is indispensable for heart development by modulating actin filament assembly , 2017, Proceedings of the National Academy of Sciences.

[5]  K. Rawlik,et al.  An atlas of genetic associations in UK Biobank , 2017, Nature Genetics.

[6]  Jie Huang,et al.  Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function , 2017, The Journal of clinical investigation.

[7]  C. Brun-Buisson,et al.  Left ventricular systolic dysfunction during septic shock: the role of loading conditions , 2017, Intensive Care Medicine.

[8]  Stefan K. Piechnik,et al.  Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort , 2017, Journal of Cardiovascular Magnetic Resonance.

[9]  Daniel Rueckert,et al.  Titin truncating variants affect heart function in disease cohorts and the general population , 2016, Nature Genetics.

[10]  Stephen Burgess,et al.  Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality , 2016, Nature Genetics.

[11]  Stephen Burgess,et al.  PhenoScanner: a database of human genotype–phenotype associations , 2016, Bioinform..

[12]  Xueqian Zhang,et al.  BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes. , 2016, Journal of molecular and cellular cardiology.

[13]  W. Koch,et al.  "Canonical and non-canonical actions of GRK5 in the heart". , 2016, Journal of molecular and cellular cardiology.

[14]  P. Visscher,et al.  Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores , 2015, bioRxiv.

[15]  J. Cheung,et al.  BAG3: a new player in the heart failure paradigm , 2015, Heart Failure Reviews.

[16]  N. Wray,et al.  Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis , 2015, Nature Genetics.

[17]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[18]  C. Wijmenga,et al.  Gene expression analysis identifies global gene dosage sensitivity in cancer , 2015, Nature Genetics.

[19]  Tan Ru San,et al.  Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease , 2015, Science Translational Medicine.

[20]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[21]  Karen S. Frese,et al.  Involvement of BAG3 and HSPB7 loci in various etiologies of systolic heart failure: Results of a European collaboration assembling more than 2000 patients. , 2013, International journal of cardiology.

[22]  D. Bluemke,et al.  Left ventricular dilation and incident congestive heart failure in asymptomatic adults without cardiovascular disease: multi-ethnic study of atherosclerosis (MESA). , 2014, Journal of cardiac failure.

[23]  M. Caron,et al.  Overlapping and Opposing Functions of G Protein-coupled Receptor Kinase 2 (GRK2) and GRK5 during Heart Development* , 2014, The Journal of Biological Chemistry.

[24]  C. Mason,et al.  Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis. , 2013, Developmental biology.

[25]  M. Caron,et al.  Grk5l controls heart development by limiting mTOR signaling during symmetry breaking. , 2013, Cell reports.

[26]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[27]  J. Höhfeld,et al.  Tension-induced autophagy , 2013, Autophagy.

[28]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[29]  Tom R. Gaunt,et al.  Four Genetic Loci Influencing Electrocardiographic Indices of Left Ventricular Hypertrophy , 2011, Circulation. Cardiovascular genetics.

[30]  Daniel P. Morin,et al.  Progression from concentric left ventricular hypertrophy and normal ejection fraction to left ventricular dysfunction. , 2011, The American journal of cardiology.

[31]  L. Fauchier,et al.  A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. , 2011, European heart journal.

[32]  W. Jiang,et al.  MTSS1: a multifunctional protein and its role in cancer invasion and metastasis. , 2011, Frontiers in bioscience.

[33]  Ronald M. Peshock,et al.  A 4-Tiered Classification of Left Ventricular Hypertrophy Based on Left Ventricular Geometry: The Dallas Heart Study , 2010, Circulation. Cardiovascular imaging.

[34]  J. Schulz-Menger,et al.  Heritability of left ventricular and papillary muscle heart size: a twin study with cardiac magnetic resonance imaging. , 2009, European heart journal.

[35]  Xiaohui Xie,et al.  Identifying novel constrained elements by exploiting biased substitution patterns , 2009, Bioinform..

[36]  J. Spertus,et al.  A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure , 2008, Nature Medicine.

[37]  J. Gottdiener,et al.  Left ventricular mass predicts heart failure not related to previous myocardial infarction: the Cardiovascular Health Study. , 2008, European heart journal.

[38]  M. Kunesova,et al.  Neuromedin beta: P73T polymorphism in overweight and obese subjects. , 2008, Physiological research.

[39]  Robin J. Trupp The many faces of heart failure. , 2007, Progress in cardiovascular nursing.

[40]  K. Chien,et al.  Heritability and major gene effects on left ventricular mass in the Chinese population: a family study , 2006, BMC cardiovascular disorders.

[41]  J. Gardin,et al.  Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. , 2004, Journal of the American College of Cardiology.

[42]  Pekka Lappalainen,et al.  Mouse MIM, a Tissue-specific Regulator of Cytoskeletal Dynamics, Interacts with ATP-Actin Monomers through Its C-terminal WH2 Domain* , 2003, The Journal of Biological Chemistry.

[43]  R. Kronmal,et al.  Multi-Ethnic Study of Atherosclerosis: objectives and design. , 2002, American journal of epidemiology.

[44]  D. Pennell,et al.  Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. , 2002, The American journal of cardiology.

[45]  Y. Hiroi,et al.  A Novel Myocyte-specific Gene MidoriPromotes the Differentiation of P19CL6 Cells into Cardiomyocytes* , 2001, The Journal of Biological Chemistry.

[46]  E. Creemers,et al.  This Review Is Part of a Thematic Series on Matrix Metalloproteinases, Which Includes the following Articles: Matrix Metalloproteinase Inhibition after Myocardial Infarction: a New Approach to Prevent Heart Failure? Matrix Metalloproteinase: Regulation and Dysregulation in the failing Heart Matrix M , 2022 .

[47]  A. Feldman,et al.  Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. , 2000, Cardiovascular research.

[48]  D E Manyari,et al.  Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. , 1990, The New England journal of medicine.