Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors

In this work, we demonstrate modulation-doped β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors. The maximum sheet carrier density for a two-dimensional electron gas (2DEG) in a β-(AlxGa1-x)2O3/Ga2O3 heterostructure is limited by the conduction band offset and parasitic channel formation in the barrier layer. We demonstrate a double heterostructure to realize a β-(AlxGa1-x)2O3/Ga2O3/(AlxGa1-x)2O3 quantum well, where electrons can be transferred from below and above the β-Ga2O3 quantum well. The confined 2DEG charge density of 3.85 × 1012 cm−2 was estimated from the low-temperature Hall measurement, which is higher than that achievable in a single heterostructure. Hall mobilities of 1775 cm2/V·s at 40 K and 123 cm2/V·s at room temperature were measured. Modulation-doped double heterostructure field effect transistors showed a maximum drain current of IDS = 257 mA/mm, a peak transconductance (gm) of 39 mS/mm, and a pinch-off voltage of −7.0 V at room temperature. The three-terminal off-s...

[1]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[2]  Hong Zhou,et al.  High-Performance Depletion/Enhancement-ode $\beta$ -Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm , 2016, IEEE Electron Device Letters.

[3]  H. Morkoç,et al.  Gate capacitance—Voltage characteristic of MODFET's: Its effect on transconductance , 1985, IEEE Transactions on Electron Devices.

[4]  Kevin D. Leedy,et al.  Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage , 2016 .

[5]  Akito Kuramata,et al.  1-kV vertical Ga2O3 field-plated Schottky barrier diodes , 2017 .

[6]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[7]  Zbigniew Galazka,et al.  3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.

[8]  Tohru Honda,et al.  Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals , 2013 .

[9]  Yuta Koga,et al.  High-mobility β-Ga2O3() single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact , 2015 .

[10]  Akito Kuramata,et al.  Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V , 2016, IEEE Electron Device Letters.

[11]  David C. Look,et al.  Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements , 1997 .

[12]  S. Denbaars,et al.  Magnetic field dependent Hall data analysis of electron transport in modulation-doped AlGaN/GaN heterostructures , 1997 .

[13]  Steven A. Ringel,et al.  Influence of metal choice on (010) β-Ga2O3 Schottky diode properties , 2017 .

[14]  Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor , 2017, 1706.09492.

[15]  S. Yamakoshi,et al.  Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer , 2016 .

[16]  B. Svensson,et al.  Iron and intrinsic deep level states in Ga2O3 , 2018 .

[17]  U. Mishra,et al.  Demonstration of β-(AlxGa1−x)2O3/β-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy , 2017 .

[18]  U. Singisetti,et al.  Electron mobility in monoclinic β-Ga_2O_3—Effect of plasmon-phonon coupling, anisotropy, and confinement , 2017, 1709.08117.

[19]  Jared M. Johnson,et al.  Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures , 2018 .

[20]  Lionel C. Kimerling,et al.  Influence of deep traps on the measurement of free‐carrier distributions in semiconductors by junction capacitance techniques , 1974 .

[21]  Siddharth Rajan,et al.  Delta-doped β-gallium oxide field-effect transistor , 2017 .

[22]  H. Kroemer,et al.  On the theory of Debye averaging in the C-V profiling of semiconductors , 1981 .

[23]  F. Ren,et al.  Temperature-Dependent Characteristics of Ni/Au and Pt/Au Schottky Diodes on β-Ga2O3 , 2017 .

[24]  J. Speck,et al.  Systematic investigation of the growth rate of β-Ga2O3(010) by plasma-assisted molecular beam epitaxy , 2014 .

[25]  High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes , 2013, 1310.6824.

[26]  J. Speck,et al.  Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy , 2017 .

[27]  C. G. Van de Walle,et al.  Fundamental limits on the electron mobility of β-Ga2O3 , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  S. Voinigescu,et al.  Charge dynamics in heterostructure Schottky-gate capacitors and their influence on the transconductance and low-frequency capacitance of MODFETs , 1989 .

[29]  Akito Kuramata,et al.  Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics , 2013 .

[30]  Steffen Ganschow,et al.  Czochralski growth and characterization of β‐Ga2O3 single crystals , 2010 .

[31]  Kiyoshi Shimamura,et al.  Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping , 2008 .

[32]  J. Speck,et al.  Composition determination of β-(AlxGa1−x)2O3 layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction , 2016 .

[33]  S. Lodha,et al.  Delta Doped $\beta$ -Ga2O3 Field Effect Transistors With Regrown Ohmic Contacts , 2018, IEEE Electron Device Letters.

[34]  Zbigniew Galazka,et al.  $\beta$ -Ga2O3 MOSFETs for Radio Frequency Operation , 2017, IEEE Electron Device Letters.

[35]  S. Yamakoshi,et al.  Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface , 2017 .

[36]  Saurabh Lodha,et al.  Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes , 2018 .

[37]  K. Ploog,et al.  Shallow and deep donors in direct-gap n -type Al x Ga 1 − x A s : S i grown by molecular-beam epitaxy , 1984 .