Computing persistent features in big data: A distributed dimension reduction approach

Persistent homology has become one of the most popular tools used in topological data analysis for analyzing big data sets. In an effort to minimize the computational complexity of finding the persistent homology of a data set, we develop a simplicial collapse algorithm called the selective collapse. This algorithm works by representing the previously developed strong collapse as a forest and uses that forest data to improve the speed of both the strong collapse and of persistent homology. Finally, we demonstrate the savings in computational complexity using geometric random graphs.

[1]  R. Ho Algebraic Topology , 2022 .

[2]  Alireza Tahbaz-Salehi,et al.  Distributed Coverage Verification in Sensor Networks Without Location Information , 2008, IEEE Transactions on Automatic Control.

[3]  Philippe Martins,et al.  Reduction algorithm for simplicial complexes , 2013, 2013 Proceedings IEEE INFOCOM.

[4]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[5]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[6]  Hamid Krim,et al.  Divide and Conquer: Localizing Coverage Holes in Sensor Networks , 2010, 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).

[7]  Marc E. Pfetsch,et al.  Computing Optimal Morse Matchings , 2006, SIAM J. Discret. Math..

[8]  Ananthram Swami,et al.  A distributed collapse of a network's dimensionality , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[9]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[10]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[11]  Hamid Krim,et al.  Distributed computation of homology using harmonics , 2013, ArXiv.

[12]  Jon M. Kleinberg,et al.  An Impossibility Theorem for Clustering , 2002, NIPS.

[13]  Ananthram Swami,et al.  Analyzing collaboration networks using simplicial complexes: A case study , 2012, 2012 Proceedings IEEE INFOCOM Workshops.

[14]  H. Krim,et al.  Applied topology in static and dynamic sensor networks , 2012, 2012 International Conference on Signal Processing and Communications (SPCOM).

[15]  Ananthram Swami,et al.  Simplifying the homology of networks via strong collapses , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  Chao Chen,et al.  Annotating Simplices with a Homology Basis and Its Applications , 2011, SWAT.

[17]  Tamal K. Dey,et al.  Computing Topological Persistence for Simplicial Maps , 2012, SoCG.

[18]  G. Carlsson,et al.  Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.

[19]  H. Krim,et al.  Persistent Homology of Delay Embeddings , 2013, 1305.3879.

[20]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[21]  Vin de Silva,et al.  Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..

[22]  Elias Gabriel Minian,et al.  Strong Homotopy Types, Nerves and Collapses , 2009, Discret. Comput. Geom..

[23]  Rien van de Weygaert,et al.  Alpha Shape Topology of the Cosmic Web , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[24]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.