Developing a co-culture system for effective megakaryo/thrombopoiesis from umbilical cord blood hematopoietic stem/progenitor cells.

[1]  Jonathan P. Kerr,et al.  Guidelines for the use of platelet transfusions , 2017, British journal of haematology.

[2]  F. Santos,et al.  Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood , 2015, Journal of tissue engineering and regenerative medicine.

[3]  Kwang-Soo Kim,et al.  Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells , 2014, Stem cell reports.

[4]  D. Weitz,et al.  Platelet bioreactor-on-a-chip. , 2014, Blood.

[5]  F. Ferreira,et al.  Proliferation extent of CD34+ cells as a key parameter to maximize megakaryocytic differentiation of umbilical cord blood-derived hematopoietic stem/progenitor cells in a two-stage culture protocol☆ , 2014, Biotechnology reports.

[6]  D. Haylock,et al.  Biomanufacture of human platelets for transfusion: Rationale and approaches. , 2014, Experimental hematology.

[7]  W. Mitchell,et al.  Ex Vivo production of platelets from stem cells , 2014, British journal of haematology.

[8]  V. Deutsch,et al.  Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside , 2013, British journal of haematology.

[9]  Jose A. Andrades,et al.  Regenerative Medicine and Tissue Engineering , 2013 .

[10]  M. Poncz,et al.  Challenges and promises for the development of donor-independent platelet transfusions. , 2013, Blood.

[11]  E. Papoutsakis,et al.  Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production. , 2013, Tissue engineering. Part A.

[12]  J. Italiano Unraveling Mechanisms that Control Platelet Production , 2012, Seminars in Thrombosis & Hemostasis.

[13]  E. Hahm,et al.  Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice , 2011, Cell Research.

[14]  H. Weiner,et al.  Depletion of TGF-β from fetal bovine serum. , 2010, Journal of immunological methods.

[15]  Cláudia Lobato da Silva,et al.  Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells. , 2010, Molecular bioSystems.

[16]  C. Zhang,et al.  Human umbilical cord blood-derived stromal cells: Multifaceted regulators of megakaryocytopoiesis , 2010, Cell cycle.

[17]  G. Almeida-Porada,et al.  Dynamic cell–cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+, CD34+CD38− and early lymphoid CD7+ cells , 2010, Journal of tissue engineering and regenerative medicine.

[18]  L. Liang,et al.  Mesenchymal stem cells from bone marrow show a stronger stimulating effect on megakaryocyte progenitor expansion than those from non-hematopoietic tissues , 2010, Platelets.

[19]  R. Stasi,et al.  Thrombopoietic agents. , 2010, Blood reviews.

[20]  J. Reems,et al.  In vitro megakaryocyte production and platelet biogenesis: state of the art. , 2010, Transfusion medicine reviews.

[21]  E. Shpall,et al.  Ex vivo expansion of cord blood , 2009, Bone Marrow Transplantation.

[22]  Shiaw-Min Hwang,et al.  Large generation of megakaryocytes from serum-free expanded human CD34+ cells. , 2009, Biochemical and biophysical research communications.

[23]  N. Kotov,et al.  Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. , 2009, Experimental hematology.

[24]  長久 博志 Bone marrow stromal cells produce thrombopoietin and stimulate megakaryocyte growth and maturation but suppress proplatelet formation , 2007 .

[25]  L. Rauova,et al.  Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications. , 2007, Blood.

[26]  P. Rebulla,et al.  Platelet transfusions , 2007, The Lancet.

[27]  Paolo Rebulla,et al.  Transfusion Medicine 2 Platelet transfusions , 2007 .

[28]  G. Almeida-Porada,et al.  A Stro-1(+) human universal stromal feeder layer to expand/maintain human bone marrow hematopoietic stem/progenitor cells in a serum-free culture system. , 2006, Experimental hematology.

[29]  A. Trickett,et al.  The expansion of megakaryocyte progenitors from CD34+-enriched mobilized peripheral blood stem cells is inhibited by Flt3-L. , 2006, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[30]  Joseph E Italiano,et al.  The biogenesis of platelets from megakaryocyte proplatelets. , 2005, The Journal of clinical investigation.

[31]  G. Almeida-Porada,et al.  A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. , 2005, Experimental Hematology.

[32]  K. Kvell,et al.  Flow cytometric analysis of CD41‐labeled platelets isolated by the rapid, one‐step OptiPrep method from human blood , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[33]  D. Bilko,et al.  Characterization of the interactions between stromal and haematopoietic progenitor cells in expansion cell culture models , 2005, Cell biology international.

[34]  Guidelines for the use of platelet transfusions , 2003, British journal of haematology.

[35]  R. Lemieux,et al.  Preferential ex vivo expansion of megakaryocytes from human cord blood CD34+-enriched cells in the presence of thrombopoietin and limiting amounts of stem cell factor and Flt-3 ligand. , 2003, Journal of hematotherapy & stem cell research.

[36]  T. Rafnar,et al.  Flt3/Flk-2-ligand in synergy with thrombopoietin delays megakaryocyte development and increases the numbers of megakaryocyte progenitor cells in serum-free cultures initiated with CD34+ cells. , 2002, Journal of hematotherapy & stem cell research.

[37]  A. Giampaolo,et al.  Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. , 2002, Blood.

[38]  G. Lip,et al.  Platelet activation: assessment and quantification. , 2001, European heart journal.

[39]  C. Verfaillie,et al.  Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. , 2001, Blood.

[40]  N. Fortunel,et al.  Transforming growth factor-β: pleiotropic role in the regulation of hematopoiesis , 2000 .

[41]  Linzhao Cheng,et al.  Human mesenchymal stem cells support megakaryocyte and pro‐platelet formation from CD34+ hematopoietic progenitor cells , 2000, Journal of cellular physiology.

[42]  M. Furman,et al.  Evaluation of platelet function by flow cytometry. , 2000, Methods.

[43]  P. Huijgens,et al.  Regulation of megakaryocytopoiesis in an in vitro stroma model: preferential adhesion of megakaryocytic progenitors and subsequent inhibition of maturation. , 2000, Experimental hematology.

[44]  Linzhao Cheng,et al.  Human Mesenchymal Stem Cells Support Megakaryocyte and Pro-Platelet Formation From CD 34 1 Hematopoietic Progenitor Cells , 2000 .

[45]  N. Fortunel,et al.  Transforming growth factor-b : pleiotropic role in the regulation of hematopoiesis , 2000 .

[46]  N. Debili,et al.  Megakaryocytic differentiation of human progenitor cells is negatively influenced by direct contact with stroma , 1999, Leukemia.

[47]  S. Gerson,et al.  Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells , 1998, Journal of cellular physiology.

[48]  A. Guerriero,et al.  Thrombopoietin is synthesized by bone marrow stromal cells. , 1997, Blood.

[49]  H. Miyazaki,et al.  Thrombopoietin alone stimulates the early proliferation and survival of human erythroid, myeloid and multipotential progenitors in serum‐free culture , 1997, British journal of haematology.

[50]  K. Kaushansky Thrombopoietin: understanding and manipulating platelet production. , 1997, Annual review of medicine.

[51]  V. Broudy,et al.  The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. , 1996, Blood.

[52]  S. Rafii,et al.  Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. , 1995, Blood.

[53]  V. Broudy,et al.  Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  N. Williams,et al.  Differential effects of transforming growth factor‐β1 on distinct developmental stages of murine megakaryocytopoiesis , 1994, Journal of cellular physiology.

[55]  G. Marguerie,et al.  Serum‐free medium allows the optimal growth of human megakaryocyte progenitors compared with human plasma supplemented cultures: Role of TGF β , 1993, Stem cells.

[56]  R. Rosenberg,et al.  Transforming growth factor beta inhibits megakaryocyte growth and endomitosis. , 1992, Blood.

[57]  J. Abgrall,et al.  Platelet factor 4 inhibits human megakaryocytopoiesis in vitro. , 1990, Blood.

[58]  R. Hoffman,et al.  Interacting cytokines regulate in vitro human megakaryocytopoiesis. , 1989, Blood.

[59]  M. Sporn,et al.  Sandwich Enzyme-Linked Immunosorbent Assays (Selisas) Quantitate and Distinguish Two Forms of Transforming Growth Factor-Beta (TGF-β1 and TGF-β2) in Complex Biological Fluids , 1989 .