Mixed dithiolate durene-DT and monothiolate phenylethanethiolate protected Au130 nanoparticles with discrete core and core-ligand energy states.

A new type of gold nanoparticle with interesting energetics has been created by employing a mixture of dithiol durene (Durene-DT) and monothiol phenylethanethiol (PhC2S) in the synthesis. The average composition of these mixed thiolate clusters is characterized to be Au(130)(Durene-DT)(29)(PhC2S)(22). Continuous quantized core charging behaviors were observed at lower potentials in voltammetric measurements, while ligand reaction and core-ligand interactions were observed at higher potentials. The absorbance spectrum displays discrete absorption bands at ca. 355, 490, 584, and 718 nm. The electrochemical and absorbance features are correlated through the determined energy states and charging energy. Broad near-IR luminescence was observed, associated with significant relaxation of excitation energy. Such interesting optical and electrochemical properties are attributed to the nanoparticle core size, ligand composition, and core-ligand charge delocalization determined by the dithiolate molecular structure.

[1]  C. Kubiak,et al.  Diffusion-Ordered NMR Spectroscopy as a Reliable Alternative to TEM for Determining the Size of Gold Nanoparticles in Organic Solutions , 2011 .

[2]  D. A. Robinson,et al.  Monolayer reactions of protected Au nanoclusters with monothiol tiopronin and 2,3-dithiol dimercaptopropanesulfonate. , 2011, Langmuir.

[3]  Joseph F. Parker,et al.  Synthesis of monodisperse [Oct4N(+)][Au25(SR)18(-)] nanoparticles, with some mechanistic observations. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[4]  Y. Negishi,et al.  Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. , 2010, Chemical communications.

[5]  R. Jin,et al.  On the ligand's role in the fluorescence of gold nanoclusters. , 2010, Nano letters.

[6]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[7]  R. Jin,et al.  Thiolate‐Protected Aun Nanoclusters as Catalysts for Selective Oxidation and Hydrogenation Processes , 2010, Advanced materials.

[8]  Chad A. Mirkin,et al.  Gold nanoparticles for biology and medicine. , 2010, Angewandte Chemie.

[9]  R. Jin,et al.  Isolation of ubiquitous Au(40)(SR)(24) clusters from the 8 kDa gold clusters. , 2010, Journal of the American Chemical Society.

[10]  Zhenghua Tang,et al.  Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters. , 2010, Journal of the American Chemical Society.

[11]  D. Ly,et al.  High yield, large scale synthesis of thiolate-protected Ag7 clusters. , 2009, Journal of the American Chemical Society.

[12]  R. Jin,et al.  Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. , 2009, ACS nano.

[13]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[14]  R. Whetten,et al.  What protects the core when the thiolated Au cluster is extremely small , 2009 .

[15]  Asantha C. Dharmaratne,et al.  Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. , 2009, Journal of the American Chemical Society.

[16]  M. Dasog,et al.  Probing the relative stability of thiolate- and dithiolate-protected Au monolayer-protected clusters. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[17]  R. Murray,et al.  Gold nanoparticles: past, present, and future. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[18]  R. Jin,et al.  Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. , 2009, The journal of physical chemistry. A.

[19]  Mathias Brust,et al.  A multidentate peptide for stabilization and facile bioconjugation of gold nanoparticles. , 2009, Bioconjugate chemistry.

[20]  Zhikun Wu,et al.  One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters , 2009 .

[21]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[22]  V. Yam,et al.  Highlights on the recent advances in gold chemistry--a photophysical perspective. , 2008, Chemical Society reviews.

[23]  P. Liljeroth,et al.  Quantised charging of monolayer-protected nanoparticles. , 2008, Chemical Society reviews.

[24]  Joseph F. Parker,et al.  Electron Self-exchange Dynamics of the Nanoparticle Couple [Au25(SC2Ph)18]0/1− By Nuclear Magnetic Resonance Line-Broadening , 2008 .

[25]  Peter Liljeroth,et al.  Synthesis and stability of monolayer-protected Au38 clusters. , 2008, Journal of the American Chemical Society.

[26]  J. Park,et al.  Preparation, characterization, and chemical stability of gold nanoparticles coated with mono-, bis-, and tris-chelating alkanethiols. , 2008, Langmuir.

[27]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[28]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[29]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[30]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[31]  M. L. Tiago,et al.  In search of a structural model for a thiolate-protected Au38 cluster , 2008, 0804.0018.

[32]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[33]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[34]  M. L. Tiago,et al.  The "staple" motif: a key to stability of thiolate-protected gold nanoclusters. , 2008, Journal of the American Chemical Society.

[35]  Gyu Leem,et al.  Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution. , 2008, Journal of the American Chemical Society.

[36]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[37]  S. Mafe,et al.  Monolayer-Protected Metallic Nanoparticles: Limitations of the Concentric Sphere Capacitor Model , 2007 .

[38]  Vincent M Rotello,et al.  Functionalized gold nanoparticles for drug delivery. , 2007, Nanomedicine.

[39]  Francesco Stellacci,et al.  Divalent Metal Nanoparticles , 2007, Science.

[40]  Gangli Wang,et al.  NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. , 2006, The journal of physical chemistry. B.

[41]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[42]  R. Murray,et al.  Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters. , 2006, The journal of physical chemistry. B.

[43]  P. Pregosin,et al.  Pulsed gradient spin-echo (pgse) diffusion and 1H,19F heteronuclear Overhauser spectroscopy (HOESY) NMR methods in inorganic and organometallic chemistry: something old and something new. , 2005, Chemical reviews.

[44]  R. Murray,et al.  Reaction of Au55(PPh3)12Cl6 with thiols yields thiolate monolayer protected Au75 clusters , 2005 .

[45]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[46]  R. Murray,et al.  Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? , 2005, Journal of the American Chemical Society.

[47]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[48]  Francesco Stellacci,et al.  Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles , 2004, Nature materials.

[49]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[50]  Dongil Lee,et al.  Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 , 2004 .

[51]  K. Kontturi,et al.  Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. , 2003, Journal of the American Chemical Society.

[52]  R. Murray,et al.  HPLC of monolayer-protected gold nanoclusters. , 2003, Analytical chemistry.

[53]  J. Fackler Forty-five years of chemical discovery including a golden quarter-century. , 2002, Inorganic chemistry.

[54]  Royce W Murray,et al.  Quantized double-layer charging of highly monodisperse metal nanoparticles. , 2002, Journal of the American Chemical Society.

[55]  R. Murray,et al.  Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles. , 2002, Journal of the American Chemical Society.

[56]  C. Mirkin,et al.  Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. , 2002, Nucleic acids research.

[57]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[58]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[59]  Charles S. Johnson,et al.  NMR Diffusion, Relaxation, and Spectroscopic Studies of Water Soluble, Monolayer-Protected Gold Nanoclusters† , 2001 .

[60]  R. Murray,et al.  Alkanethiolate-Protected Gold Clusters Generated from Sodium S-Dodecylthiosulfate (Bunte Salts) , 2000 .

[61]  R. Bruce Lennox,et al.  Gold−Sulfur Bonding in 2D and 3D Self-Assembled Monolayers: XPS Characterization , 2000 .

[62]  Andrew J. Friedman,et al.  Adsorption Profiles of Chelating Aromatic Dithiols and Disulfides: Comparison to Those of Normal Alkanethiols and Disulfides , 2000 .

[63]  T. Lee,et al.  Self-Assembled Monolayers Based on Chelating Aromatic Dithiols on Gold , 1998 .

[64]  R. Murray,et al.  Reactivity of Monolayer-Protected Gold Cluster Molecules: Steric Effects , 1998 .

[65]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[66]  G. Whitesides,et al.  Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides , 1989 .

[67]  D. Williams,et al.  Electrochemistry of Multisulfur Heterocycles: Trithiocarbonates and Trithiocarbenium Ions , 1975 .

[68]  L. Aarons,et al.  Electron spin resonance studies of thiocarbonyl anion radicals , 1972 .

[69]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[70]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[71]  B. C. Gilbert,et al.  Electron spin resonance studies. Part XLVI. Oxidation of thiols and disulphides in aqueous solution: formation of RS˙, RSO˙, RSO2˙, RSSR–, and carbon radicals , 1975 .