A penalty method for American options with jump diffusion processes

Summary.The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint is imposed by using a penalty method. We derive sufficient conditions for global convergence of the discrete penalized equations at each timestep. Finally, we present numerical tests which illustrate such convergence.

[1]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[2]  Alan L. Lewis Algorithms: Fear of jumps , 2002 .

[3]  Peter A. Forsyth,et al.  A finite volume approach for contingent claims valuation , 2001 .

[4]  Peter A. Forsyth,et al.  Discrete Asian barrier options , 1999 .

[5]  Sabrina Mulinacci An approximation of American option prices in a jump-diffusion model , 1996 .

[6]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[7]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[8]  T. Coleman,et al.  Reconstructing the Unknown Local Volatility Function , 1999 .

[9]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[10]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .

[11]  P. Forsyth,et al.  Valuation of segregated funds: shout options with maturity extensions , 2001 .

[12]  Peter A. Forsyth,et al.  Next generation models for convertible bonds with credit risk , 2002 .

[13]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[14]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[15]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[16]  Curt Randall,et al.  Pricing Financial Instruments: The Finite Difference Method , 2000 .

[17]  George Labahn,et al.  A numerical PDE approach for pricing callable bonds , 2001 .

[18]  G. Meyer The numerical valuation of options with underlying jumps. , 1998 .

[19]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[20]  Roberto Natalini,et al.  Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory , 2004, Numerische Mathematik.

[21]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[22]  Peter A. Forsyth,et al.  A finite element approach to the pricing of discrete lookbacks with stochastic volatility , 1999 .

[23]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[24]  P. Forsyth,et al.  Shout options: a framework for pricing contracts which can be modified by the investor , 2001 .

[25]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[26]  Peter A. Forsyth,et al.  Analysis of the stability of the linear boundary condition for the Black–Scholes equation , 2004 .

[27]  Mark Broadie,et al.  Application of the Fast Gauss Transform to Option Pricing , 2003, Manag. Sci..

[28]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[29]  G. Barles,et al.  Numerical Methods in Finance: Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory , 1997 .

[30]  Peter A. Forsyth,et al.  QUADRATIC CONVERGENCE OF A PENALTY METHOD FOR VALUING AMERICAN OPTIONS , 2000 .

[31]  Kaushik I. Amin Jump Diffusion Option Valuation in Discrete Time , 1993 .

[32]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[33]  Xiao Lan Zhang,et al.  Numerical Analysis of American Option Pricing in a Jump-Diffusion Model , 1997, Math. Oper. Res..

[34]  Cornelis W. Oosterlee,et al.  Numerical valuation of options with jumps in the underlying , 2005 .

[35]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[36]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[37]  Huy En Pham Optimal Stopping of Controlled Jump Diiusion Processes: a Viscosity Solution Approach , 1998 .

[38]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[39]  A.,et al.  FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .

[40]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[41]  C W Cryer,et al.  Minkowski matrices. , 1983, TOMS.

[42]  Antony Ware,et al.  Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..

[43]  K. Manjunatha,et al.  Derivatives , 2006, Numerical Methods in Physics with Python.

[44]  A. Lewis Fear of Jumps , 2002 .

[45]  Peter A. Forsyth,et al.  Numerical convergence properties of option pricing PDEs with uncertain volatility , 2003 .