A penalty method for American options with jump diffusion processes
暂无分享,去创建一个
[1] Peter A. Forsyth,et al. Penalty methods for American options with stochastic volatility , 1998 .
[2] Alan L. Lewis. Algorithms: Fear of jumps , 2002 .
[3] Peter A. Forsyth,et al. A finite volume approach for contingent claims valuation , 2001 .
[4] Peter A. Forsyth,et al. Discrete Asian barrier options , 1999 .
[5] Sabrina Mulinacci. An approximation of American option prices in a jump-diffusion model , 1996 .
[6] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[7] F. B. Ellerby,et al. Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.
[8] T. Coleman,et al. Reconstructing the Unknown Local Volatility Function , 1999 .
[9] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[10] C. M. Elliott,et al. Weak and variational methods for moving boundary problems , 1982 .
[11] P. Forsyth,et al. Valuation of segregated funds: shout options with maturity extensions , 2001 .
[12] Peter A. Forsyth,et al. Next generation models for convertible bonds with credit risk , 2002 .
[13] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[14] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[15] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[16] Curt Randall,et al. Pricing Financial Instruments: The Finite Difference Method , 2000 .
[17] George Labahn,et al. A numerical PDE approach for pricing callable bonds , 2001 .
[18] G. Meyer. The numerical valuation of options with underlying jumps. , 1998 .
[19] R. Rannacher. Finite element solution of diffusion problems with irregular data , 1984 .
[20] Roberto Natalini,et al. Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory , 2004, Numerische Mathematik.
[21] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[22] Peter A. Forsyth,et al. A finite element approach to the pricing of discrete lookbacks with stochastic volatility , 1999 .
[23] Leif Andersen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .
[24] P. Forsyth,et al. Shout options: a framework for pricing contracts which can be modified by the investor , 2001 .
[25] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[26] Peter A. Forsyth,et al. Analysis of the stability of the linear boundary condition for the Black–Scholes equation , 2004 .
[27] Mark Broadie,et al. Application of the Fast Gauss Transform to Option Pricing , 2003, Manag. Sci..
[28] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[29] G. Barles,et al. Numerical Methods in Finance: Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory , 1997 .
[30] Peter A. Forsyth,et al. QUADRATIC CONVERGENCE OF A PENALTY METHOD FOR VALUING AMERICAN OPTIONS , 2000 .
[31] Kaushik I. Amin. Jump Diffusion Option Valuation in Discrete Time , 1993 .
[32] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[33] Xiao Lan Zhang,et al. Numerical Analysis of American Option Pricing in a Jump-Diffusion Model , 1997, Math. Oper. Res..
[34] Cornelis W. Oosterlee,et al. Numerical valuation of options with jumps in the underlying , 2005 .
[35] RAUL KANGRO,et al. Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..
[36] P. Lions,et al. User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.
[37] Huy En Pham. Optimal Stopping of Controlled Jump Diiusion Processes: a Viscosity Solution Approach , 1998 .
[38] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[39] A.,et al. FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , .
[40] Leslie Greengard,et al. The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..
[41] C W Cryer,et al. Minkowski matrices. , 1983, TOMS.
[42] Antony Ware,et al. Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..
[43] K. Manjunatha,et al. Derivatives , 2006 .
[44] A. Lewis. Fear of Jumps , 2002 .
[45] Peter A. Forsyth,et al. Numerical convergence properties of option pricing PDEs with uncertain volatility , 2003 .