Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range

Wire grid polarizers (WGPs), periodic nano-optical metasurfaces, are convenient polarizing elements for many optical applications. However, they are still inadequate in the deep ultraviolet spectral range. It is shown that to achieve high performance ultraviolet WGPs a material with large absolute value of the complex permittivity and extinction coefficient at the wavelength of interest has to be utilized. This requirement is compared to refractive index models considering intraband and interband absorption processes. It is elucidated why the extinction ratio of metallic WGPs intrinsically humble in the deep ultraviolet, whereas wide bandgap semiconductors are superior material candidates in this spectral range. To demonstrate this, the design, fabrication, and optical characterization of a titanium dioxide WGP are presented. At a wavelength of 193 nm an unprecedented extinction ratio of 384 and a transmittance of 10% is achieved.

[1]  C. Gout,et al.  Electronic band structure of titanium dioxide , 1977 .

[2]  A. Tünnermann,et al.  Plasmonic nanoring fabrication tuned to pitch: Efficient, deterministic, and large scale realization of ultra-small gaps for next generation plasmonic devices , 2014 .

[3]  Markku Kuittinen,et al.  Wire-grid polarizers in the volume plasmon region. , 2009, Optics express.

[4]  Bernhard von Blanckenhagen,et al.  Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials. , 2002, Applied optics.

[5]  Andreas Tünnermann,et al.  Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide , 2015, Nanotechnology.

[6]  Won Bae Han,et al.  Effect of Crystal Structure and Grain Size on Photo-Catalytic Activities of Remote-Plasma Atomic Layer Deposited Titanium Oxide Thin Film , 2012 .

[7]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[8]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[9]  D. Flagello,et al.  Polarization effects associated with hyper-numerical-aperture (>1) lithography , 2005 .

[10]  Andrea Alù,et al.  Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. , 2013, Nano letters.

[11]  Angelo Giglia,et al.  Dispersion model for optical thin films applicable in wide spectral range , 2015, SPIE Optical Systems Design.

[12]  Thomas Käsebier,et al.  Tungsten wire grid polarizer for applications in the DUV spectral range. , 2012, Applied optics.

[13]  Adriana Szeghalmi,et al.  Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings. , 2009, Applied optics.

[14]  M. Seery,et al.  Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst , 2007 .

[15]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[16]  D. Papaconstantopoulos,et al.  Handbook of the Band Structure of Elemental Solids , 1986 .

[17]  H. Tompkins,et al.  Determining thickness of thin metal films with spectroscopic ellipsometry for applications in magnetic random-access memory , 1998 .

[18]  J. Stuchlík,et al.  Application of sum rule to the dispersion model of hydrogenated amorphous silicon , 2013 .

[19]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[20]  Olivier Morel,et al.  Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging. , 2006, Applied optics.

[21]  Thomas Käsebier,et al.  High efficiency two-dimensional grating reflectors with angularly tunable polarization efficiency , 2013 .

[22]  Philippe Lalanne,et al.  On the effective medium theory of subwavelength periodic structures , 1996 .

[23]  Norbert Rosenkranz,et al.  First results for hyper NA scanner emulation from AIMS 45-193i , 2006, Photomask Japan.

[24]  Andreas Tünnermann,et al.  Fabrication influences on deep-ultraviolet tungsten wire grid polarizers manufactured by double patterning. , 2014, Optics letters.

[25]  Using Plasmonics to Shape Light Beams , 2009 .

[26]  E. M. Moser,et al.  Production of photocatalytically active titania layers: A comparison of plasma processes and coating properties , 2013 .

[27]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[28]  Toyohiko Yatagai,et al.  Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating. , 2014, Applied optics.

[29]  Thomas Käsebier,et al.  Double-sided structured mask for sub-micron resolution proximity i-line mask-aligner lithography. , 2015, Optics express.

[30]  E. Palik,et al.  Optical Parameters for the Materials in HOC I and HOC II , 1997 .

[31]  George R. Bird,et al.  The Wire Grid as a Near-Infrared Polarizer , 1960 .

[32]  A. Tünnermann,et al.  Broadband iridium wire grid polarizer for UV applications. , 2011, Optics letters.

[33]  Thomas Käsebier,et al.  Silicon wire grid polarizer for ultraviolet applications. , 2014, Applied optics.

[34]  David Nečas,et al.  Universal dispersion model for characterization of optical thin films over a wide spectral range: application to hafnia. , 2015, Applied optics.

[35]  A. Tünnermann,et al.  Plasmonic properties of aluminum nanorings generated by double patterning. , 2012, Optics letters.

[36]  P. Chaikin,et al.  Aluminum nanowire polarizing grids: Fabrication and analysis , 2006 .

[37]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[38]  M. Kuittinen,et al.  Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness. , 2007, Optics express.