Medically important bacterial–fungal interactions

[1]  G. Reid,et al.  Effect of Lactobacillus rhamnosus GR‐1 and Lactobacillus reuteri RC‐14 on the ability of Candida albicans to infect cells and induce inflammation , 2009, Microbiology and immunology.

[2]  J. Gaddy,et al.  The Acinetobacter baumannii 19606 OmpA Protein Plays a Role in Biofilm Formation on Abiotic Surfaces and in the Interaction of This Pathogen with Eukaryotic Cells , 2009, Infection and Immunity.

[3]  E. Mylonakis,et al.  Interaction of Candida albicans with an Intestinal Pathogen, Salmonella enterica Serovar Typhimurium , 2009, Eukaryotic Cell.

[4]  S. Akira,et al.  Th2 allergic immune response to inhaled fungal antigens is modulated by TLR‐4‐independent bacterial products , 2009, European journal of immunology.

[5]  E. Denamur,et al.  Candida albicans impairs macrophage function and facilitates Pseudomonas aeruginosa pneumonia in rat* , 2009, Critical care medicine.

[6]  C. Forestier,et al.  Adhesion of Human Probiotic Lactobacillus rhamnosus to Cervical and Vaginal Cells and Interaction with Vaginosis-Associated Pathogens , 2009, Infectious diseases in obstetrics and gynecology.

[7]  D. Hogan,et al.  Pseudomonas aeruginosa-Candida albicans Interactions: Localization and Fungal Toxicity of a Phenazine Derivative , 2008, Applied and Environmental Microbiology.

[8]  A. Nemec [Multidrug resistant Acinetobacter baumannii]. , 2008, Klinicka mikrobiologie a infekcni lekarstvi.

[9]  Michael G. Surette,et al.  Discerning the Complexity of Community Interactions Using a Drosophila Model of Polymicrobial Infections , 2008, PLoS pathogens.

[10]  G. Eliopoulos,et al.  Prokaryote–eukaryote interactions identified by using Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[11]  Yong Zhu,et al.  Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. , 2008, Cell host & microbe.

[12]  Harald Seifert,et al.  Acinetobacter baumannii: Emergence of a Successful Pathogen , 2008, Clinical Microbiology Reviews.

[13]  Mardge H. Cohen,et al.  Vaginal IL-8 levels are positively associated with Candida albicans and inversely with lactobacilli in HIV-infected women. , 2008, Journal of reproductive immunology.

[14]  F. O'Gara,et al.  Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. , 2008, Journal of medical microbiology.

[15]  E. Mylonakis,et al.  Epidemiology and management of cryptococcal meningitis: developments and challenges , 2008, Expert opinion on pharmacotherapy.

[16]  L. Stateva,et al.  Farnesol and dodecanol effects on the Candida albicans Ras1‐cAMP signalling pathway and the regulation of morphogenesis , 2007, Molecular microbiology.

[17]  R. Weinstein,et al.  Acinetobacter infection. , 2008, The New England journal of medicine.

[18]  Lian-Hui Zhang,et al.  A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition , 2008, The ISME Journal.

[19]  P. Lipke,et al.  Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. , 2007, Diagnostic microbiology and infectious disease.

[20]  H. Chim,et al.  Five-year review of infections in a burn intensive care unit: High incidence of Acinetobacter baumannii in a tropical climate. , 2007, Burns : journal of the International Society for Burn Injuries.

[21]  L. Dijkshoorn,et al.  An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii , 2007, Nature Reviews Microbiology.

[22]  D. Hogan,et al.  Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa , 2007, Molecular microbiology.

[23]  H. Renz,et al.  Epidemiological and immunological evidence for the hygiene hypothesis. , 2007, Immunobiology.

[24]  P. Lipke,et al.  Candida albicans Als proteins mediate aggregation with bacteria and yeasts. , 2007, Medical mycology.

[25]  X. Chen,et al.  Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components , 2007, Applied Microbiology and Biotechnology.

[26]  G. O’Toole,et al.  Inverse Regulation of Biofilm Formation and Swarming Motility by Pseudomonas aeruginosa PA14 , 2007, Journal of bacteriology.

[27]  F. Ausubel,et al.  Antifungal Chemical Compounds Identified Using a C. elegans Pathogenicity Assay , 2007, PLoS pathogens.

[28]  N. Cevahir,et al.  Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens , 2007, Mycoses.

[29]  D. Chopp,et al.  The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional , 2006, Molecular microbiology.

[30]  A. Casadevall,et al.  Cryptococcus neoformans Can Utilize the Bacterial Melanin Precursor Homogentisic Acid for Fungal Melanogenesis , 2006, Applied and Environmental Microbiology.

[31]  R. Favory,et al.  Impact of antifungal treatment on Candida–Pseudomonas interaction: a preliminary retrospective case–control study , 2006, Intensive Care Medicine.

[32]  Y. Mehta,et al.  Device-Associated Nosocomial Infections in 55 Intensive Care Units of 8 Developing Countries , 2006, Annals of Internal Medicine.

[33]  M. Shirtliff,et al.  Effect of Farnesol on Staphylococcus aureus Biofilm Formation and Antimicrobial Susceptibility , 2006, Antimicrobial Agents and Chemotherapy.

[34]  A. Casadevall,et al.  Induction by Klebsiella aerogenes of a Melanin-Like Pigment in Cryptococcus neoformans , 2006, Applied and Environmental Microbiology.

[35]  J. Timsit,et al.  Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. , 2006, Chest.

[36]  G. Macfarlane,et al.  Effect of pH on an In Vitro Model of Gastric Microbiota in Enteral Nutrition Patients , 2005, Applied and Environmental Microbiology.

[37]  J. L. D. de Macedo,et al.  Bacterial and fungal colonization of burn wounds. , 2005, Memorias do Instituto Oswaldo Cruz.

[38]  R. Prasad,et al.  Interactions between bacteria and Candida in the burn wound. , 2005, Burns : journal of the International Society for Burn Injuries.

[39]  G. Quindós,et al.  Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. , 2005, Medicina oral, patologia oral y cirugia bucal.

[40]  A. Bauernfeind,et al.  Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis , 1987, Infection.

[41]  Ho Kyun Kim,et al.  Mycoflora in cystic fibrosis: Some ecologic aspects of pseudomonas aeruginosa and Candida albicans , 1973, Mycopathologia et mycologia applicata.

[42]  L. Samaranayake,et al.  Coaggregation profiles of the microflora from root surface caries lesions. , 2005, Archives of oral biology.

[43]  R. Kolter,et al.  A Pseudomonas aeruginosa quorum‐sensing molecule influences Candida albicans morphology , 2004, Molecular microbiology.

[44]  G. Huffnagle,et al.  Regulation of Candida albicans Morphogenesis by Fatty Acid Metabolites , 2004, Infection and Immunity.

[45]  J. Shimada,et al.  The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. , 2004, FEMS microbiology letters.

[46]  M. Snyder,et al.  Microbial Synergy via an Ethanol-Triggered Pathway , 2004, Molecular and Cellular Biology.

[47]  R. Darouiche,et al.  Candida Infections of Medical Devices , 2004, Clinical Microbiology Reviews.

[48]  Lian-Hui Zhang,et al.  A bacterial cell–cell communication signal with cross‐kingdom structural analogues , 2003, Molecular microbiology.

[49]  M. J. Kennedy,et al.  An anaerobic continuous-flow culture model of interactions between intestinal microflora and Candida albicans , 1988, Mycopathologia.

[50]  D. Soll,et al.  A characterization of pH-regulated dimorphism in Candida albicans , 1984, Mycopathologia.

[51]  Shane Gillespie,et al.  Attributable mortality of nosocomial candidemia, revisited. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[52]  Eric A. Johnson,et al.  Sensitization of Staphylococcus aureus and Escherichia coli to Antibiotics by the Sesquiterpenoids Nerolidol, Farnesol, Bisabolol, and Apritone , 2003, Antimicrobial Agents and Chemotherapy.

[53]  A. Casadevall,et al.  The contribution of melanin to microbial pathogenesis , 2003, Cellular microbiology.

[54]  P. Brigidi,et al.  Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets , 2002, Journal of applied microbiology.

[55]  J. Bach,et al.  The effect of infections on susceptibility to autoimmune and allergic diseases. , 2002, The New England journal of medicine.

[56]  R. Kolter,et al.  Pseudomonas-Candida Interactions: An Ecological Role for Virulence Factors , 2002, Science.

[57]  G. Baillie,et al.  Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. , 2002, Journal of medical microbiology.

[58]  M. Nader-Macías,et al.  Vaginal lactobacilli: self- and co-aggregating ability , 2002, British journal of biomedical science.

[59]  K. Nickerson,et al.  Quorum Sensing in the Dimorphic FungusCandida albicans Is Mediated by Farnesol , 2001, Applied and Environmental Microbiology.

[60]  A. Fleming,et al.  Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. , 1980, Reviews of infectious diseases.

[61]  C. Kurz,et al.  Caenorhabditis elegans is a model host for Salmonella typhimurium , 2000, Current Biology.

[62]  F. Ausubel,et al.  Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans , 2000, Current Biology.

[63]  R. Cannon,et al.  Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. , 2000, Microbiology.

[64]  D. Relman,et al.  Bacterial diversity within the human subgingival crevice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  U. Munzel,et al.  Bacterial flora accompanying Candida yeasts in clinical specimens , 1999, Mycoses.

[66]  David S. Jones,et al.  Implications of endotracheal tube biofilm for ventilator-associated pneumonia , 1999, Intensive Care Medicine.

[67]  S. Abe,et al.  Efficacy of antibacterial drugs in mice with complex infection by Candida albicans and Escherichia coli. , 1999, The Journal of antibiotics.

[68]  R. Gaynes,et al.  Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. , 1999, Critical care medicine.

[69]  B. Ramsey,et al.  Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. , 1999, The Journal of infectious diseases.

[70]  G. Taylor,et al.  Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. , 1999, Journal of clinical pathology.

[71]  M. Hilty,et al.  Biotherapeutic effects of probiotic bacteria on candidiasis in immunodeficient mice , 1997, Infection and immunity.

[72]  G. Fink,et al.  Nonfilamentous C. albicans Mutants Are Avirulent , 1997, Cell.

[73]  D. Dunn,et al.  Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. , 1997, The Journal of surgical research.

[74]  H. Jenkinson,et al.  Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions , 1996, Infection and immunity.

[75]  J. Sobel,et al.  A murine model of Candida glabrata vaginitis. , 1996, The Journal of infectious diseases.

[76]  G. Akagawa,et al.  Mortality of Candida albicans-infected mice is facilitated by superinfection of Escherichia coli or administration of its lipopolysaccharide. , 1995, The Journal of infectious diseases.

[77]  P. Gopal,et al.  Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii , 1995, Infection and immunity.

[78]  P. Ambroise‐Thomas,et al.  Growth inhibition of pathogenic yeasts by Pseudomonas aeruginosa in vitro: clinical implications in blood cultures , 1994, Mycoses.

[79]  J. Kerr Inhibition of fungal growth by Pseudomonas aeruginosa and Pseudomonas cepacia isolated from patients with cystic fibrosis. , 1994, The Journal of infection.

[80]  J. Kerr Suppression of fungal growth exhibited by Pseudomonas aeruginosa , 1994, Journal of clinical microbiology.

[81]  D. Berry,et al.  Inhibition of Candida albicans by Lactobacillus acidophilus: evidence for the involvement of a peroxidase system. , 1994, Microbios.

[82]  C. S. Raymond,et al.  Endotoxin promotes synergistic lethality during concurrent Escherichia coli and Candida albicans infection. , 1992, The Journal of surgical research.

[83]  H. Jenkinson,et al.  Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans , 1990, Infection and immunity.

[84]  A. Verghese,et al.  Synchronous bacterial and fungal septicemia. A marker for the critically ill surgical patient. , 1988, The American surgeon.

[85]  W. P. Reed,et al.  Special studies of the Hickman catheter of a patient with recurrent bacteremia and candidemia. , 1986, The American journal of the medical sciences.

[86]  E. Law,et al.  Increased susceptibility to lethal Candida infections in burned mice preinfected with Pseudomonas aeruginosa or pretreated with proteolytic enzymes , 1986, Infection and immunity.

[87]  E. Carlson,et al.  Protection by Candida albicans of Staphylococcus aureus in the establishment of dual infection in mice , 1985, Infection and immunity.

[88]  D. Fry,et al.  Candida sepsis. Implications of polymicrobial blood-borne infection. , 1985, Archives of surgery.

[89]  J. Costerton,et al.  Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters , 1984, Journal of clinical microbiology.

[90]  E. Carlson,et al.  Effect of strain of Staphylococcus aureus on synergism with Candida albicans resulting in mouse mortality and morbidity , 1983, Infection and immunity.

[91]  R. Calderone,et al.  Inhibitory effect of cerulenin and sodium butyrate on germination of Candida albicans , 1983, Antimicrobial Agents and Chemotherapy.

[92]  E. Carlson Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice , 1983, Infection and immunity.

[93]  L. Hockey,et al.  Detection of fungemia obscured by concomitant bacteremia: in vitro and in vivo studies , 1982, Journal of clinical microbiology.

[94]  G. Cole,et al.  Systemic and gastrointestinal candidiasis of infant mice after intragastric challenge , 1979, Infection and immunity.

[95]  D. Gale,et al.  RESPONSE OF MICE TO THE INOCULATIONS OF BOTH CANDIDA ALBICANS AND ESCHERICHIA COLI I , 1957, Journal of bacteriology.

[96]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .

[97]  Lorian,et al.  ENVIRONMENTAL EXPOSURE TO ENDOTOXIN AND ITS RELATION TO ASTHMA IN SCHOOL-AGE CHILDREN , 2022 .