Exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion

We show that the methodology based on the generalized inverse scattering transform (IST) concept provides a systematic way to discover the novel exactly integrable nonlinear Schrodinger equation models with varying dispersion, nonlinearity and gain or absorption. The fundamental innovation of the present approach is to notice that it is possible both to allow for a variable spectral parameter with new dependent variables and to apply of the famous "moving in time focuses" concept of the self-focusing theory to the IST formalism. We show that for nonlinear optics this algorithm is a useful tool to design novel dispersion managed fiber transmission lines and soliton lasers. Fundamental soliton management regimes are predicted.

[1]  A. Hasegawa,et al.  Quasi-soliton propagation in dispersion-managed optical fibers. , 1997, Optics letters.

[2]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[3]  M. Matsumoto,et al.  Nonlinear Bloch waves , 2001 .

[4]  S. G. Kosinski,et al.  Soliton self-frequency shift in a short tapered air-silica microstructure fiber. , 2001 .

[5]  T. L. Belyaeva,et al.  Maxwell's solitary waves: optical video solitons and wave second harmonics solitons , 2000, Photonics West - Lasers and Applications in Science and Engineering.

[6]  S. V. Chernikov,et al.  Experimental demonstration of step-like dispersion profiling in optical fibre for soliton pulse generation and compression , 1994 .

[7]  Chuan-Sheng Liu,et al.  Solitons in nonuniform media , 1976 .

[8]  A. Hasegawa New Trends in Optical Soliton Transmission Systems , 1998 .

[9]  Yaochun Shen Principles of nonlinear optics , 1984 .

[10]  R. Khokhlov,et al.  Reviews of Topical Problems: Self-Focusing and Diffraction of Light in a Nonlinear Medium , 1968 .

[11]  J. R. Taylor,et al.  Wavelength and duration tunable subpicosecond source using adiabatic Raman compression , 2001, CLEO 2001.

[12]  Vladimir E. Zakharov,et al.  The Inverse Scattering Method , 1980 .

[13]  K. Tajima Compensation of soliton broadening in nonlinear optical fibers with loss. , 1987, Optics letters.

[14]  Massive WDM and Tdm Soliton Transmission Systems: Proceedings from an International Symposium on Massive WDM and Tdm Soliton Transmission_Systems_Held , 2000 .

[15]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[16]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[17]  Balakrishnan Soliton propagation in nonuniform media. , 1985, Physical review. A, General physics.

[18]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[19]  Stefan Wabnitz,et al.  Optical Solitons: Theoretical Challenges and Industrial Perspectives , 1999 .

[20]  E. V. Samarina,et al.  Maxwell soliton nonlinear dynamics on personal computers , 1996, Other Conferences.

[21]  Vladimir E. Zakharov,et al.  On propagation of short pulses in strong dispersion managed optical lines , 1999 .

[22]  J. Ray,et al.  Extension of inverse scattering method to nonlinear evolution equation in nonuniform medium , 1981 .

[23]  Akira Hasegawa,et al.  Femtosecond soliton amplification in nonlinear dispersive traps and soliton dispersion management , 2000, Photonics West - Lasers and Applications in Science and Engineering.

[24]  Vladimir Ya. Khasilev Optimal control of all-optical communication soliton systems , 1996, Other Conferences.

[25]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[26]  Vladimir E. Zakharov,et al.  Inverse scattering method with variable spectral parameter , 1987 .

[27]  Hasegawa,et al.  Novel soliton solutions of the nonlinear Schrodinger equation model , 2000, Physical review letters.

[28]  Alwyn C. Scott,et al.  Nonlinear Science at the Dawn of the 21st Century , 2000 .

[29]  Vladimir N. Serkin,et al.  Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management , 2001 .

[30]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[31]  A. Hasegawa,et al.  Guiding-center soliton in optical fibers. , 1990, Optics letters.

[32]  H. Haus,et al.  Dispersion-managed solitons as nonlinear Bloch waves , 1999 .

[33]  J. R. Taylor,et al.  Optical Solitons: Contents , 1992 .

[34]  A. Hasegawa,et al.  Amplification and reshaping of optical solitons in a glass fiber-IV: Use of the stimulated Raman process. , 1983, Optics letters.

[35]  M. Matsumoto,et al.  Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers , 2001 .

[36]  J. Taylor,et al.  Picosecond soliton pulse-duration-selectable source based on adiabatic compression in Raman amplifier , 2000 .

[37]  V. Serkin,et al.  Possibility of using self-focusing for increasing contrast and narrowing of ultrashort light pulses , 1975 .

[38]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[39]  T. Belyaeva,et al.  High-energy optical Schrödinger solitons , 2001 .

[40]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[41]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[42]  Annette L. Worthy,et al.  Optimization of soliton amplitude in dispersion-decreasing nonlinear optical fibers , 1999 .

[43]  R. Stolen,et al.  Experimental demonstration of soliton propagation in long fibers: loss compensated by Raman gain. , 1985, Optics letters.

[44]  Keith J. Blow,et al.  Soliton reconstruction through synchronous amplification , 1988 .

[45]  J. Herrera Envelope solitons in inhomogeneous media , 1984 .

[46]  Akira Hasegawa,et al.  Massive WDM and TDM Soliton Transmission Systems , 2002 .

[47]  和達 三樹,et al.  F. Calogero and A. Degasperis: Spectral Transform and Solitons; Tools to Solve and Investigate Nonlinear Evolution Equations, Vol. 1, North-Holland, Amsterdam and New York, 1982, xvi+516ページ, 23×16cm, 33,600円 (Studies in Mathematics and Its Applications, Vol. 13). , 1983 .

[48]  V. I. Talanov SELF-FOCUSING OF ELECTROMAGNETIC WAVES IN NON-LINEAR MEDIA , 1964 .

[49]  P. L. Kelley,et al.  Self-focusing of optical beams , 1965, International Quantum Electronics Conference, 2005..

[50]  J. Moores,et al.  Nonlinear compression of chirped solitary waves withand without phase modulation. , 1996, Optics letters.

[51]  Allen Taflove,et al.  Computational modeling of femtosecond optical solitons from Maxwell's equations , 1992 .

[52]  J. Krumhansl Unity in the Science of Physics , 1991 .

[53]  Francesco Calogero,et al.  Why Are Certain Nonlinear PDEs Both Widely Applicable and Integrable , 1991 .

[54]  F. Calogero A method to generate solvable nonlinear evolution equations , 1975 .

[55]  A. Hasegawa,et al.  Soliton management in the nonlinear Schrödinger equation model with varying dispersion, nonlinearity, and gain , 2000 .

[56]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[57]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[58]  A. Hasegawa,et al.  Soliton-based optical communications: an overview , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[59]  Keith A. Nelson,et al.  Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications , 1985 .

[60]  E. M. Dianov,et al.  Generation of soliton pulse train in optical fibre using two CW singlemode diode lasers , 1992 .

[61]  Charles H. Townes,et al.  Self-trapping of optical beams , 1964 .

[62]  J. Taylor,et al.  Integrated all optical fibre source of multigigahertz soliton pulse train , 1993 .

[63]  B. Seckler,et al.  The Inverse Problem in the Quantum Theory of Scattering... , 1964 .

[64]  P. French,et al.  The generation of ultrashort laser pulses , 1995 .

[65]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[66]  Gadi Lenz,et al.  Adiabatic Bragg soliton compression in nonuniform grating structures , 1998 .

[67]  E. M. Dianov,et al.  Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines , 1991 .

[68]  L. Mollenauer,et al.  Soliton propagation in long fibers with periodically compensated loss , 1985, Annual Meeting Optical Society of America.

[69]  Antonio Degasperis,et al.  Spectral Transform and Solitons: How to Solve and Investigate Nonlinear Evolution Equations , 1988 .

[70]  T. Taniuti Reductive Perturbation Method and Far Fields of Wave Equations (Part I. General Theory) , 1975 .

[71]  E. Dianov,et al.  Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers , 1985 .

[72]  A. N. Oraevsky INVITED PAPER: Bose condensates from the point of view of laser physics , 2001 .