Applications of the algebraic geometry of the Putman–Wieland conjecture

We give two applications of our prior work toward the Putman–Wieland conjecture. First, we deduce a strengthening of a result of Marković–Tošić on virtual mapping class group actions on the homology of covers. Second, let g⩾2$g\geqslant 2$ and let Σg′,n′→Σg,n$\Sigma _{g^{\prime },n^{\prime }}\rightarrow \Sigma _{g, n}$ be a finite H$H$ ‐cover of topological surfaces. We show the virtual action of the mapping class group of Σg,n+1$\Sigma _{g,n+1}$ on an H$H$ ‐isotypic component of H1(Σg′)$H^1(\Sigma _{g^{\prime }})$ has nonunitary image.

[1]  V. Marković Unramified correspondences and virtual properties of mapping class groups , 2022, Bulletin of the London Mathematical Society.

[2]  Daniel Litt,et al.  Canonical representations of surface groups , 2022, 2205.15352.

[3]  Daniel Litt,et al.  Geometric local systems on very general curves and isomonodromy , 2022, 2202.00039.

[4]  Eduard Looijenga,et al.  Curves with prescribed symmetry and associated representations of mapping class groups , 2018, Mathematische Annalen.

[5]  F. Elzein,et al.  Mixed Hodge Structures , 2013, 1302.5811.

[6]  Andrew Putman,et al.  Abelian quotients of subgroups of the mapping class group and higher Prym representations , 2011, J. Lond. Math. Soc..

[7]  J. Ellenberg,et al.  Expander graphs, gonality, and variation of Galois representations , 2010, 1008.3675.

[8]  I. Biswas,et al.  ON PRILL'S PROBLEM , 2005 .

[9]  H. Boden,et al.  MODULI SPACES OF PARABOLIC HIGGS BUNDLES AND PARABOLIC K(D) PAIRS OVER SMOOTH CURVES: I , 1996, alg-geom/9610014.

[10]  Kôji Yokogawa,et al.  INFINITESIMAL DEFORMATION OF PARABOLIC HIGGS SHEAVES , 1995 .

[11]  M. Saito,et al.  Modules de Hodge Polarisables , 1988 .

[12]  Shing-Tung Yau,et al.  A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces , 1982 .

[13]  C. S. Seshadri,et al.  Moduli of vector bundles on curves with parabolic structures , 1980 .

[14]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[15]  P. Deligne,et al.  Théorie de Hodge, II , 1971 .

[16]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[17]  W. Marsden I and J , 2012 .

[18]  N. Kumar Some Remarks on Prill ’ s Problem , 2006 .

[19]  Yuri Tschinkel,et al.  On curve correspondences , 2002 .

[20]  T. Palva,et al.  Pages 1-19 , 2001 .

[21]  Klaus Timmerscheidt Mixed Hodge theory for unitary local Systems , 1987 .

[22]  P. Deligne Un théorème de finitude pour la monodromie , 1987 .

[23]  R. Howe Discrete Groups in Geometry and Analysis , 1987 .

[24]  P. Griffiths,et al.  Geometry of algebraic curves , 1985 .

[25]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[26]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .