Geometric vertex decomposition and liaison

Abstract Geometric vertex decomposition and liaison are two frameworks that have been used to produce similar results about similar families of algebraic varieties. In this paper, we establish an explicit connection between these approaches. In particular, we show that each geometrically vertex decomposable ideal is linked by a sequence of elementary G-biliaisons of height $1$ to an ideal of indeterminates and, conversely, that every G-biliaison of a certain type gives rise to a geometric vertex decomposition. As a consequence, we can immediately conclude that several well-known families of ideals are glicci, including Schubert determinantal ideals, defining ideals of varieties of complexes and defining ideals of graded lower bound cluster algebras.

[1]  C. Peterson,et al.  Gorenstein liaison, complete intersection liaison invariants and unobstructedness , 2001 .

[2]  Ezra Miller,et al.  Gröbner geometry of vertex decompositions and of flagged tableaux , 2005, math/0502144.

[3]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[4]  Alexander Woo,et al.  A Gröbner basis for Kazhdan-Lusztig ideals , 2009, 0909.0564.

[5]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[6]  Huy Tài Hà,et al.  Whiskers and sequentially Cohen-Macaulay graphs , 2008, J. Comb. Theory, Ser. A.

[7]  Jenna Rajchgot,et al.  Lower bound cluster algebras: presentations, Cohen-Macaulayness, and normality , 2015, 1508.02314.

[8]  Ezra Miller,et al.  Gröbner geometry of Schubert polynomials , 2001 .

[9]  U. Nagel,et al.  Gröbner bases via linkage , 2010, 1008.5314.

[11]  Monomial Ideals and the Gorenstein Liaison Class of a Complete Intersection , 2001, Compositio Mathematica.

[12]  Liaison and Related Topics: Notes from the Torino Workshop/School , 2002, math/0205161.

[13]  Rafael H. Villarreal,et al.  Shellable graphs and sequentially Cohen-Macaulay bipartite graphs , 2008, J. Comb. Theory, Ser. A.

[14]  M. Casanellas Gorenstein liaison of 0-dimensional schemes , 2003 .

[15]  R. Hartshorne Some examples of Gorenstein liaison in codimension three , 2001, math/0103138.

[16]  U. Nagel Even Liaison Classes Generated by Gorenstein Linkage , 1998 .

[17]  R. Stanley Combinatorics and commutative algebra , 1983 .

[18]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[19]  Sergey Fomin,et al.  Cluster algebras III: Upper bounds and double Bruhat cells , 2003 .

[20]  O. Colhoun FLAGS , 2019, Blues of Heaven, The.

[21]  R. Hartshorne Generalized divisors and biliaison , 2003, math/0301162.

[22]  R. Hartshorne,et al.  Gorenstein liaison and ACM sheaves , 2003, math/0304447.

[23]  Joshua Lesperance Gorenstein liaison in , 2006 .

[24]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[25]  M. Casanellas,et al.  Gorenstein Liaison of curves in P 4 , 2000 .

[26]  A. V. Zelevinskii Two remarks on graded nilpotent classes , 1985 .

[27]  V. Lakshmibai,et al.  Degeneracy schemes, quiver schemes, and Schubert varieties , 1998 .

[28]  B. Ulrich,et al.  The structure of linkage , 1987 .

[29]  Lucien Szpiro,et al.  Liaison des variétés algébriques. I , 1974 .

[30]  E. D. Negri,et al.  G-biliaison of ladder Pfaffian varieties , 2008, 0809.3417.

[31]  CODIMENSION 3 ARITHMETICALLY GORENSTEIN SUBSCHEMES OF PROJECTIVE N-SPACE , 2006, math/0611478.

[32]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[33]  Tim Roemer,et al.  Glicci simplicial complexes , 2007, 0704.3283.

[34]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[35]  Christopher A. Francisco,et al.  Sequentially Cohen-Macaulay edge ideals , 2005, math/0511022.

[36]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[37]  M. Casanellas,et al.  Gorenstein liaison of divisors on standard determinantal schemes and on rational normal scrolls , 2001 .

[38]  Nathan Fieldsteel,et al.  Gröbner bases and the Cohen-Macaulay property of Li’s double determinantal varieties , 2019, Proceedings of the American Mathematical Society, Series B.

[39]  U. Nagel,et al.  Glicci ideals , 2012, Compositio Mathematica.

[40]  A generalized Gaeta’s theorem , 2007, Compositio Mathematica.

[41]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS. I , 1996 .

[42]  Russ Woodroofe,et al.  Vertex decomposable graphs and obstructions to shellability , 2008, Proceedings of the American Mathematical Society.

[43]  William Fulton,et al.  Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .