Supernatural and Comfortable User Interfaces for Basic 3D Interaction Tasks

The renewed interest in virtual reality (VR) in the last 5-10 years led to a necessity of the development of new 3D user interfaces (3DUIs) to interact with three-dimensional content. Mainly due to the vastly superior, affordable hardware, VR is on the way to become a common sight in our daily lives. 3DUIs still pose many challenges, such as distance misperception and the lack of guidelines on the placement or use of UI elements since many guidelines for 2DUIs are not necessarily valid in 3D. Technological advances allowed the reliable tracking of the user, compared to traditional discrete button input. These advances evoked the development of natural user interfaces (NUIs), which enable users to interact with computers using simple gestures, voice and other means previously reserved for inter-human communication. NUIs offer the advantage of being easier to learn for novice users, but a direct mapping of physical movements to VR can be physically tiring after short use. Supernatural user interfaces (SNUIs) are interfaces which are still inspired by the ways humans interact with one another or with their environment, but not limited by it. SNUIs permit actions which are not possible in the physical world. Examples would include teleportation or floating interface elements. Since virtual realities allow developers or users to set the rules within a world, the way users interact with virtual environments (VEs) can also be supernatural. Natural interaction can still inspire these interactions, however, they are less limited by natural constraints. The goal of this thesis is to develop and evaluate supernatural basic interactions for tasks such as selection and travel within 3DUIs. The contributions in this thesis are split into three main parts. Within the first part, the contributions regarding performance in 3DUIs are shown. First, hover interactions for stereoscopic, head-tracked setups are evaluated. Based on user feedback, a HoverSpace above virtual objects is presented, allowing users to acquire additional information about objects. Afterwards, the interaction space for fully-immersive HMD environments analyzed, showing that distance misperceptions within the line-of-sight are the primary cause of selection errors 3DUIs. These observations led to the investigation of the effects of comfort on 3DUIs. We show that during prolonged use, users are more efficient at direct 3D selection tasks when they have a more comfortable workspace. Using these results, adaptive 3DUIs are presented, which are always positioned around a user’s arm joints, reducing the fatigue during extended tasks. Finally, a supernatural selection technique is evaluated, giving user’s more than just two virtual hands, subdividing the interaction space and requiring fewer arm movements. Within the third part, travel in VR is analyzed. Following the supernatural principle, instead of offering purely natural walking, three different flying setups are presented, one requiring the user to be seated and two where the user is suspended in the air. All three generate a high sense of presence, but all of them also increase cybersickness symptoms in participants. Thus, for further research, walking-based travel techniques were evaluated. Within a study, it was shown that redirected walking, although subconsciously manipulating participants, causes a significantly higher cognitive load. Despite that, a solution for the commonly observed reluctance of users to walk at a natural pace through VE is presented. This Safety-Sphere is using a distinctive, round area within the physical tracking space to provide users with an area without any manipulation. Users had to leave the sphere to travel to other places within the VE. There they were redirected at an optimal rate. Additionally, this thesis presents the hardware developed throughout this thesis, a stereoscopic multi-touch table, and a low-resolution peripheral vision stimulation to enhance presence and increase the field-of-view (FOV) of head-mounted displays (HMDs). Das erneute Interesse an Virtual Reality (VR) in den letzten Jahren fuhrte zur Entwicklung von 3D User Interfaces (3DUIs) zur Interaktion mit dreidimensionalen Inhalten. Vor allem wegen der inzwischen uberlegenen, erschwinglichen Hardware ist VR nun auf dem Weg, ein alltaglicher Anblick zu werden. Bei der Entwicklung von 3DUIs gibt es weiterhin viele Herausforderungen, wie z. B. die Fehleinschatzung von Distanzen in VR und das Fehlen von Richtlinien fur die Platzierung oder Verwendung von UI-Elementen, da viele Richtlinien fur 2DUIs nicht unbedingt in 3D gultig sind. Technologische Fortschritte ermoglichten das zuverlassige Tracken des Benutzers im Vergleich zur herkommlichen diskreten Tasteneingabe. Dies fuhrte zur Entwicklung von naturlichen Benutzerschnittstellen (NUIs), die es Benutzern ermoglichen, mit einfachen Gesten, Sprache und anderen Mitteln, die zuvor fur die zwischenmenschliche Kommunikation reserviert waren, mit Computern zu interagieren. NUIs bieten den Vorteil, dass sie fur Anfanger einfacher zu erlernen sind. Eine direkte Zuordnung von physischen Bewegungen zu VR kann jedoch nach kurzem Gebrauch anstrengend sein. In Anbetracht dessen, wie korperlich anstrengend NUIs sein konnen, sollen neue, ubernaturliche Interaktionen die langfristige Nutzung von VR ermoglichen. Da VR es Entwicklern oder Benutzern erlaubt, die Regeln in einer Welt festzulegen, kann die Art, wie Benutzer mit virtuellen Umgebungen (VEs) interagieren, auch ubernaturlich sein. Diese Interaktionen konnen immer noch durch naturliche menschlichen Interaktion inspiriert sein, sind jedoch weniger durch Naturgesetze eingeschrankt. Das Ziel dieser Arbeit ist es, ubernaturliche Interaktionen fur die Selektion in 3DUIs und das Reisen innerhalb von VR zu entwickeln und zu evaluieren. Im Einzelnen sind die Beitrage dieser Arbeit in drei Hauptteile aufgeteilt. Im ersten Teil werden die Beitrage zur Performanz in 3DUIs gezeigt. Zunachst werden Hover-Interaktionen fur stereoskopische Head-Tracking-Setups ausgewertet. Basierend auf Benutzerfeedback wird ein HoverSpace uber virtuellen Objekten dargestellt, der es Benutzern ermoglicht, zusatzliche Informationen uber Objekte zu erhalten. Anschliesend wurde der Interaktionsraum fur voll-immersive HMD-Umgebungen analysiert, der zeigt, dass Distanz-Fehlwahrnehmungen innerhalb der Sichtlinie die Hauptursache fur 3DUIs sind. Diese Beobachtungen fuhrten zur Untersuchung der Auswirkungen von physischer Anstrengung auf 3DUIs. Es wird gezeigt, dass Benutzer bei langerem Gebrauch effizienter bei direkten 3D-Selektionsaufgaben sind, wenn sie einen komfortableren Arbeitsbereich haben. Auf Basis dieser Ergebnisse werden adaptive 3DUIs vorgestellt, deren Position auf den Armgelenken eines Benutzers basieren und die Ermudung bei langen Aufgaben reduzieren. Schlieslich wird eine ubernaturliche Selektionstechnik evaluiert, die dem Benutzer mehr als nur zwei virtuelle Hande gibt, den Interaktionsraum untergliedert und weniger Armbewegungen erfordert. Im dritten Teil wird Bewegung durch VEs analysiert. Dem Supernatural UI Prinzip folgend, werden zunachst, statt rein naturliches Gehen, drei verschiedene Flugtechniken prasentiert, eine im Sitzen und zwei in einer Aufhangung von der Decke. Bei allen wird ein hohes Prasenzgefuhl erzeugt, aber auch eine Erhohung der Cyberssickness-Symptome bei den Teilnehmern. Fur weitere Studien wurden daher Reisetechniken auf Basis des naturlichen Laufens evaluiert. In einer Studie wurde gezeigt, dass Redirected Walking, obwohl es die Teilnehmer nur unterbewusst manipuliert, eine signifikant hohere kognitive Belastung verursacht. Auserdem wird eine Losung, fur die Angst von Nutzern naturlich in VR zu gehen, prasentiert. Diese Safety-Sphere verwendet einen klar unterscheidbaren runden Bereich innerhalb des physischen Tracking-Bereichs, um Benutzern einen Bereich ohne jegliche Manipulation zu bieten. Um zu anderen Orten in der VE zu reisen, verlassen Benutzer die Sphare und werden mit einer optimalen Rate umgeleitet. Daruber hinaus prasentiert diese Arbeit die entwickelte Hardware: einen stereoskopischen Multitouch-Tisch und ein periphares Display mit niedriger Auflosung als Erweiterung fur Head-Mounted Displays, um die Prasenz zu erhohen und das Sichtfeld zu vergrosern.

[1]  Patty Curthoys,et al.  Developing user interfaces: Ensuring usability through product and process , 1997 .

[2]  J. Enns,et al.  Attention for perception and action: task interference for action planning, but not for online control , 2008, Experimental Brain Research.

[3]  Higinio Mora-Mora,et al.  μ-MAR: Multiplane 3D Marker based Registration for depth-sensing cameras , 2015, Expert Syst. Appl..

[4]  Thomas A. Furness The Super Cockpit and its Human Factors Challenges , 1986 .

[5]  Frederick P. Brooks,et al.  Project GROPEHaptic displays for scientific visualization , 1990, SIGGRAPH.

[6]  J. P. Djajadiningrat Cubby: What you see is where you act. Interlacing the display and manipulation spaces. , 1998 .

[7]  Marina Kolesnik,et al.  Estimation of travel distance from visual motion in virtual environments , 2007, TAP.

[8]  Michael Naimark Aspen the Verb: Musings on Heritage and Virtuality , 2006, PRESENCE: Teleoperators and Virtual Environments.

[9]  Jock D. Mackinlay,et al.  A morphological analysis of the design space of input devices , 1991, TOIS.

[10]  Victoria Interrante,et al.  Distance Perception in Immersive Virtual Environments, Revisited , 2006, IEEE Virtual Reality Conference (VR 2006).

[11]  Maud Marchal,et al.  The magic barrier tape: a novel metaphor for infinite navigation in virtual worlds with a restricted walking workspace , 2009, VRST '09.

[12]  John R. Wilson,et al.  Virtual Reality-Induced Symptoms and Effects (VRISE) , 1999, Presence: Teleoperators & Virtual Environments.

[13]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[14]  Susan J. Hespos,et al.  Physics for infants: characterizing the origins of knowledge about objects, substances, and number. , 2012, Wiley interdisciplinary reviews. Cognitive science.

[15]  Carl Machover,et al.  Four decades of computer graphics , 1994, IEEE Computer Graphics and Applications.

[16]  M. Kozak,et al.  Emotional processing of fear: exposure to corrective information. , 1986, Psychological bulletin.

[17]  Bernd Fröhlich,et al.  The Bent Pick Ray: An Extended Pointing Technique for Multi-User Interaction , 2006, 3D User Interfaces (3DUI'06).

[18]  Ivan Poupyrev,et al.  The go-go interaction technique: non-linear mapping for direct manipulation in VR , 1996, UIST '96.

[19]  Timothy P. McNamara,et al.  Exploring large virtual environments with an HMD when physical space is limited , 2007, APGV.

[20]  Geoff Walker,et al.  A review of technologies for sensing contact location on the surface of a display , 2012 .

[21]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[22]  Sabarish V. Babu,et al.  Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment , 2005, IEEE Transactions on Visualization and Computer Graphics.

[23]  Timo Ropinski,et al.  Moving Towards Generally Applicable Redirected Walking , 2008 .

[24]  Jeremy R. Cooperstock,et al.  Did "Minority Report" Get It Wrong? Superiority of the Mouse over 3D Input Devices in a 3D Placement Task , 2009, INTERACT.

[25]  M Usoh,et al.  Presence questionaires in reality , 2000 .

[26]  Woontack Woo,et al.  An empirical evaluation of virtual hand techniques for 3D object manipulation in a tangible augmented reality environment , 2010, 2010 IEEE Symposium on 3D User Interfaces (3DUI).

[27]  Alan Liu,et al.  A Study on the Perception of Haptics in Surgical Simulation , 2004, ISMS.

[28]  Frank Steinicke Being Really Virtual: Immersive Natives and the Future of Virtual Reality , 2016 .

[29]  Mary C. Whitton,et al.  Sensitivity to scene motion for phases of head yaws , 2008, APGV '08.

[30]  S. Grill Postural instability in Parkinson's disease. , 1999, Maryland medical journal.

[31]  D. Anton Occupational biomechanics , 1986 .

[32]  Gerd Bruder,et al.  Are 4 hands better than 2?: bimanual interaction for quadmanual user interfaces , 2014, SUI.

[33]  Mark R. Lehto,et al.  DECISION‐MAKING MODELS, DECISION SUPPORT, AND PROBLEM SOLVING , 2012, Handbook of Human Factors and Ergonomics.

[34]  Roy A. Ruddle,et al.  The benefits of using a walking interface to navigate virtual environments , 2009, TCHI.

[35]  Gerd Bruder,et al.  Edutainment & Engagement at Exhibitions: A Case Study of Gamification in the Historic Hammaburg Model , 2016, Mensch & Computer.

[36]  John E. Hall,et al.  Guyton and Hall Textbook of Medical Physiology , 2015 .

[37]  Christian Geiger,et al.  ZeroGravity - eine virtuelle Nutzererfahrung in Luft und Wasser , 2014, Mensch & Computer Workshopband.

[38]  James Park,et al.  The Brain's Sense of Movement , 2003, The Yale Journal of Biology and Medicine.

[39]  James E. Cutting,et al.  Chapter 3 – Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth* , 1995 .

[40]  Michel Millodot Od PhD DOSc Faao FCOptom Dictionary of Optometry and Visual Science , 2000 .

[41]  Jane Yung-jen Hsu,et al.  Touching the void: direct-touch interaction for intangible displays , 2010, CHI.

[42]  Uwe D. Hanebeck,et al.  Telepresence Techniques for Controlling Avatar Motion in First Person Games , 2005, INTETAIN.

[43]  Eike Langbehn,et al.  Redirected Walking in Virtual Reality , 2019, Encyclopedia of Computer Graphics and Games.

[44]  I. Scott MacKenzie,et al.  Fitts' throughput and the speed-accuracy tradeoff , 2008, CHI.

[45]  Colin Ware,et al.  Exploration and virtual camera control in virtual three dimensional environments , 1990, I3D '90.

[46]  T. Ichikawa,et al.  Egocentric Object Manipulation in Virtual Environments: Empirical Evaluation of Interaction Techniques , 1998, Comput. Graph. Forum.

[47]  J. Dichgans,et al.  Visual-Vestibular Interaction: Effects on Self-Motion Perception and Postural Control , 1978 .

[48]  Chris Shaw,et al.  Pain and Fatigue in Desktop VR , 1998, Graphics Interface.

[49]  Makoto Sato,et al.  Haptic ring: touching virtual creatures in mixed reality environments , 2009, SIGGRAPH '09.

[50]  Sarah A. Douglas,et al.  Testing pointing device performance and user assessment with the ISO 9241, Part 9 standard , 1999, CHI '99.

[51]  Gudrun Klinker,et al.  Shadow tracking on multi-touch tables , 2008, AVI '08.

[52]  P. Milgram,et al.  A Taxonomy of Mixed Reality Visual Displays , 1994 .

[53]  Mel Slater,et al.  Taking steps: the influence of a walking technique on presence in virtual reality , 1995, TCHI.

[54]  Gerd Bruder,et al.  To touch or not to touch?: comparing 2D touch and 3D mid-air interaction on stereoscopic tabletop surfaces , 2013, SUI '13.

[55]  Klaus H. Hinrichs,et al.  Triangle cursor: interactions with objects above the tabletop , 2011, ITS '11.

[56]  Steven K. Feiner,et al.  Exploring MARS: developing indoor and outdoor user interfaces to a mobile augmented reality system , 1999, Comput. Graph..

[57]  Gerd Bruder,et al.  A taxonomy for deploying redirection techniques in immersive virtual environments , 2012, 2012 IEEE Virtual Reality Workshops (VRW).

[58]  Roy A. Ruddle,et al.  Movement Around Real and Virtual Cluttered Environments , 2005, Presence: Teleoperators & Virtual Environments.

[59]  Mary C. Whitton,et al.  Walking > walking-in-place > flying, in virtual environments , 1999, SIGGRAPH.

[60]  Doug A. Bowman,et al.  A human motor behavior model for distal pointing tasks , 2010, Int. J. Hum. Comput. Stud..

[61]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[62]  OmniPres project IST-2001-39237 Deliverable 5 Measuring Presence : A Guide to Current Measurement Approaches , 2004 .

[63]  M. Sheelagh T. Carpendale,et al.  Shallow-depth 3d interaction: design and evaluation of one-, two- and three-touch techniques , 2007, CHI.

[64]  Robert J. Teather,et al.  Pointing at 3D targets in a stereo head-tracked virtual environment , 2011, 2011 IEEE Symposium on 3D User Interfaces (3DUI).

[65]  I.,et al.  Fitts' Law as a Research and Design Tool in Human-Computer Interaction , 1992, Hum. Comput. Interact..

[66]  Peter Willemsen,et al.  The effects of head-mounted display mechanical properties and field of view on distance judgments in virtual environments , 2009, TAP.

[67]  Gerd Bruder,et al.  Self-motion illusions in immersive virtual reality environments , 2011, 2011 IEEE Virtual Reality Conference.

[68]  Bernd Fröhlich,et al.  Implementing Multi-Viewer Stereo Displays , 2005, WSCG.

[69]  Gerd Bruder,et al.  Touching the Void Revisited: Analyses of Touch Behavior on and above Tabletop Surfaces , 2013, INTERACT.

[70]  E. Langbehn,et al.  Evaluation of an Omnidirectional Walking-in-Place User Interface with Virtual Locomotion Speed Scaled by Forward Leaning Angle , 2015 .

[71]  Gerd Bruder,et al.  Ambiculus: LED-based low-resolution peripheral display extension for immersive head-mounted displays , 2016, VRIC.

[72]  David Kushner Virtual reality's moment , 2014, IEEE Spectrum.

[73]  Andrew S. Forsberg,et al.  Image plane interaction techniques in 3D immersive environments , 1997, SI3D.

[74]  Alvin Jude,et al.  Models for Rested Touchless Gestural Interaction , 2015, SUI.

[75]  Christopher M. Schlick,et al.  Fitts' Law in Bivariate Pointing on Large Touch Screens: Age-Differentiated Analysis of Motion Angle Effects on Movement Times and Error Rates , 2011, HCI.

[76]  Yasutoshi Makino,et al.  Demo hour , 2015, Interactions.

[77]  Johannes Schöning,et al.  Using hands and feet to navigate and manipulate spatial data , 2009, CHI Extended Abstracts.

[78]  Ray Zone Stereoscopic Cinema and the Origins of 3-D Film, 1838-1952 , 2007 .

[79]  Guido M. Cortelazzo,et al.  Time-of-Flight Cameras and Microsoft Kinect™ , 2012, Springer Briefs in Electrical and Computer Engineering.

[80]  Hao Lei,et al.  What is the minimum field of view required for efficient navigation? , 2007, Vision Research.

[81]  T. Collett Vision: Simple stereopsis , 1996, Current Biology.

[82]  Klaus H. Hinrichs,et al.  Imperceptible depth shifts for touch interaction with stereoscopic objects , 2014, CHI.

[83]  Rajiv V. Dubey,et al.  Point & Teleport Locomotion Technique for Virtual Reality , 2016, CHI PLAY.

[84]  John Brown Some Tests of the Decay Theory of Immediate Memory , 1958 .

[85]  Mark T. Bolas,et al.  Comparability of narrow and wide field-of-view head-mounted displays for medium-field distance judgments , 2012, SAP.

[86]  Jeffrey T. Hansberger,et al.  Dispelling the Gorilla Arm Syndrome: The Viability of Prolonged Gesture Interactions , 2017, HCI.

[87]  P. M. Jaekl,et al.  Perceptual stability during head movement in virtual reality , 2002, Proceedings IEEE Virtual Reality 2002.

[88]  Max Pfeiffer,et al.  3D virtual hand pointing with EMS and vibration feedback , 2015, 2015 IEEE Symposium on 3D User Interfaces (3DUI).

[89]  Stephan Brandauer,et al.  Navigation in Virtual Reality with the Wii Balance Board , 2009 .

[90]  Timothy P. McNamara,et al.  Updating orientation in large virtual environments using scaled translational gain , 2006, APGV '06.

[91]  Jonathan W. Kelly,et al.  Cognitive Demands of Semi-Natural Virtual Locomotion , 2013, PRESENCE: Teleoperators and Virtual Environments.

[92]  Suranga Nanayakkara,et al.  FingerReader: a wearable device to support text reading on the go , 2014, CHI Extended Abstracts.

[93]  エドウィン、ファン、リエール,et al.  Method and system for controlling ambient light and lighting unit , 2003 .

[94]  Mark T. Bolas,et al.  Physical Space Requirements for Redirected Walking: How Size and Shape Affect Performance , 2015, ICAT-EGVE.

[95]  Sharif Razzaque,et al.  The hand is slower than the eye: a quantitative exploration of visual dominance over proprioception , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[96]  B. Rogers,et al.  The Interaction of Binocular Disparity and Motion Parallax in the Computation of Depth , 1996, Vision Research.

[97]  Frank Steinicke,et al.  Control methods in a supernatural flight simulator , 2016, VR.

[98]  I. Kaufman The Cerebral Cortex of Man: A Clinical Study of Localization of Function , 1951 .

[99]  Andreas Pott,et al.  The CableRobot simulator large scale motion platform based on cable robot technology , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[100]  P. Grimm,et al.  Virtual und Augmented Reality (VR/AR):Grundlagen und Methoden der Virtuellen und Augmentierten Realität , 2014 .

[101]  Bernd Fröhlich,et al.  The Responsive Workbench: A Virtual Work Environment , 1995, Computer.

[102]  Douglas C. Engelbart,et al.  Display-Selection Techniques for Text Manipulation , 1967 .

[103]  Frank Steinicke,et al.  Touching the Cloud: Bimanual annotation of immersive point clouds , 2014, 3DUI.

[104]  Yam San Chee,et al.  C-VISions: socialized learning through collaborative, virtual, interactive simulations , 2002, CSCL.

[105]  D. Prowe Berlin , 1855, Journal of public health, and sanitary review.

[106]  Robert V. Kenyon,et al.  Reaching Within a Dynamic Virtual Environment , 2006 .

[107]  Ingrid M. L. C. Vogels,et al.  Visual Experience of 3D-TV with pixelated Ambilight , 2007 .

[108]  Hiroyuki Shinoda,et al.  HaptoMime: mid-air haptic interaction with a floating virtual screen , 2014, UIST.

[109]  Andreas Butz,et al.  Interactions in the air: adding further depth to interactive tabletops , 2009, UIST '09.

[110]  Edward E. Smith,et al.  Cognitive Psychology: Mind and Brain , 2006 .

[111]  J. Thomson Is continuous visual monitoring necessary in visually guided locomotion? , 1983, Journal of experimental psychology. Human perception and performance.

[112]  B Fröhlich,et al.  The responsive workbench: a virtual working environment for physicians. , 1995, Computers in biology and medicine.

[113]  Myron W. Krueger,et al.  VIDEOPLACE—an artificial reality , 1985, CHI '85.

[114]  Domenico Prattichizzo,et al.  Simplified design of haptic display by extending one-point kinesthetic feedback to multipoint tactile feedback , 2010, 2010 IEEE Haptics Symposium.

[115]  Robert W. Lindeman,et al.  On Your Feet!: Enhancing Vection in Leaning-Based Interfaces through Multisensory Stimuli , 2016, SUI.

[116]  Arun Yoganandan,et al.  Comparison of a two-handed interface to a wand interface and a mouse interface for fundamental 3D tasks , 2012, 2012 IEEE Symposium on 3D User Interfaces (3DUI).

[117]  Patrick Baudisch,et al.  Hover widgets: using the tracking state to extend the capabilities of pen-operated devices , 2006, CHI.

[118]  Jack M. Loomis,et al.  Visual perception of egocentric distance in real and virtual environments. , 2003 .

[119]  Y Le Interactive technologies. , 2000, Healthcare informatics : the business magazine for information and communication systems.

[120]  Eyal Ofek,et al.  Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences , 2016, CHI.

[121]  John McLester,et al.  Applied Biomechanics: Concepts and Connections , 2007 .

[122]  Roger W. Cholewiak,et al.  Sensory and Physiological Bases of Touch , 1991 .

[123]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[124]  D. Proffitt,et al.  Eye height scaling of absolute size in immersive and nonimmersive displays. , 2000, Journal of experimental psychology. Human perception and performance.

[125]  Christoph Hölscher,et al.  Reference frames in learning from maps and navigation , 2014, Psychological Research.

[126]  Shumin Zhai,et al.  The influence of muscle groups on performance of multiple degree-of-freedom input , 1996, CHI.

[127]  Mel Slater,et al.  Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[128]  Doug A. Bowman,et al.  An evaluation of techniques for grabbing and manipulating remote objects in immersive virtual environments , 1997, SI3D.

[129]  Henry Been-Lirn Duh,et al.  Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment , 2002, Proceedings IEEE Virtual Reality 2002.

[130]  Uwe Kloos,et al.  Velocity-dependent dynamic curvature gain for redirected walking , 2011, 2011 IEEE Virtual Reality Conference.

[131]  M. Hagberg,et al.  Perceived exertion, comfort and working technique in professional computer users and associations with the incidence of neck and upper extremity symptoms , 2012, BMC Musculoskeletal Disorders.

[132]  Eduardo Cuervo BEYOND REALITY: Head-Mounted Displays for Mobile Systems Researchers , 2017, GETMBL.

[133]  Seungju Han,et al.  A study on touch & hover based interaction for zooming , 2012, CHI EA '12.

[134]  Patrick Baudisch,et al.  Precise selection techniques for multi-touch screens , 2006, CHI.

[135]  Robert A. Akka,et al.  Utilizing 6D head-tracking data for stereoscopic computer-graphics perspective transformations , 1993, Electronic Imaging.

[136]  Victoria Interrante,et al.  Seven League Boots: A New Metaphor for Augmented Locomotion through Moderately Large Scale Immersive Virtual Environments , 2007, 2007 IEEE Symposium on 3D User Interfaces.

[137]  I. Rentschler,et al.  Peripheral vision and pattern recognition: a review. , 2011, Journal of vision.

[138]  Mark T. Bolas,et al.  A design for a smartphone-based head mounted display , 2011, 2011 IEEE Virtual Reality Conference.

[139]  William E. Marsh,et al.  Is the user trained? Assessing performance and cognitive resource demands in the Virtusphere , 2013, 2013 IEEE Symposium on 3D User Interfaces (3DUI).

[140]  Gerd Bruder,et al.  Evaluation of Two Leaning-Based Control Methods in a Dragon Riding Interface , 2016 .

[141]  Mary C. Whitton,et al.  An evaluation of navigational ability comparing Redirected Free Exploration with Distractors to Walking-in-Place and joystick locomotio interfaces , 2011, 2011 IEEE Virtual Reality Conference.

[142]  Desney S. Tan,et al.  AirWave: non-contact haptic feedback using air vortex rings , 2013, UbiComp.

[143]  Matthias Rauterberg,et al.  An empirical comparison of menu-selection (CUI) and desktop (GUI) computer programs carried out by beginners and experts , 1992 .

[144]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[145]  Yang Li,et al.  Experimental analysis of mode switching techniques in pen-based user interfaces , 2005, CHI.

[146]  Kellogg S. Booth,et al.  Fish tank virtual reality , 1993, INTERCHI.

[147]  Makoto Sato,et al.  A new step-in-place locomotion interface for virtual environment with large display system , 2002, SIGGRAPH '02.

[148]  Karthik Ramani,et al.  Modeling Cumulative Arm Fatigue in Mid-Air Interaction based on Perceived Exertion and Kinetics of Arm Motion , 2017, CHI.

[149]  M. Posner,et al.  Visual dominance: an information-processing account of its origins and significance. , 1976, Psychological review.

[150]  W. Kirchner Age differences in short-term retention of rapidly changing information. , 1958, Journal of experimental psychology.

[151]  John C. Hart,et al.  The CAVE: audio visual experience automatic virtual environment , 1992, CACM.

[152]  Bernd Fröhlich,et al.  Exploring geo-scientific data in virtual environments , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[153]  Bernd Fröhlich,et al.  Cubic-Mouse-Based Interaction in Virtual Environments , 2000, IEEE Computer Graphics and Applications.

[154]  Frederick P. Brooks,et al.  Is There Any Real Virtue in Virtual Reality , 1994 .

[155]  Ivan E. Sutherland,et al.  Sketchpad—a man-machine graphical communication system , 1998 .

[156]  Uwe D. Hanebeck,et al.  Motion Compression for Telepresent Walking in Large Target Environments , 2004, Presence: Teleoperators & Virtual Environments.

[157]  Michael A. Teitel The Eyephone: a head-mounted stereo display , 1990, Other Conferences.

[158]  Joze Guna,et al.  An Analysis of the Precision and Reliability of the Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking , 2014, Sensors.

[159]  Eric Kolstad,et al.  The Effects of Virtual Reality, Augmented Reality, and Motion Parallax on Egocentric Depth Perception , 2008, VR.

[160]  Edwin Earl Catmull,et al.  A subdivision algorithm for computer display of curved surfaces. , 1974 .

[161]  Allen Newell,et al.  The model human processor: An engineering model of human performance. , 1986 .

[162]  Naphtali Rishe,et al.  Interaction Design for 3D User Interfaces: The World of Modern Input Devices for Research, Applications, and Game Development , 2016 .

[163]  Shumin Zhai,et al.  The “Silk Cursor”: investigating transparency for 3D target acquisition , 1994, CHI '94.

[164]  Ravin Balakrishnan,et al.  Reaching for objects in VR displays: lag and frame rate , 1994, TCHI.

[165]  R. A. WEALE Limits of Human Vision , 1961, Nature.

[166]  A. Siegel,et al.  The development of spatial representations of large-scale environments. , 1975, Advances in child development and behavior.

[167]  Sandra G. Hart,et al.  Nasa-Task Load Index (NASA-TLX); 20 Years Later , 2006 .

[168]  Byron J. Pierce,et al.  Perceptual Issues in the Use of Head-Mounted Visual Displays , 2006, Hum. Factors.

[169]  Gerd Bruder,et al.  Influence of Comfort on 3D Selection Task Performance in Immersive Desktop Setups , 2015, J. Virtual Real. Broadcast..

[170]  Robert S. Kennedy,et al.  Simulator Sickness Questionnaire: An enhanced method for quantifying simulator sickness. , 1993 .

[171]  Li Li,et al.  The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research , 2017, i-Perception.

[172]  J. G. Hollands,et al.  Engineering Psychology and Human Performance , 1984 .

[173]  JoAnn Difede,et al.  Virtual reality exposure therapy for combat‐related posttraumatic stress disorder , 2010, Annals of the New York Academy of Sciences.

[174]  Frederick P. Brooks,et al.  Moving objects in space: exploiting proprioception in virtual-environment interaction , 1997, SIGGRAPH.

[175]  Steven K. Feiner,et al.  Balloon Selection: A Multi-Finger Technique for Accurate Low-Fatigue 3D Selection , 2007, 2007 IEEE Symposium on 3D User Interfaces.

[176]  Tovi Grossman,et al.  Medusa: a proximity-aware multi-touch tabletop , 2011, UIST.

[177]  Martin Hachet,et al.  Toucheo: multitouch and stereo combined in a seamless workspace , 2011, UIST.

[178]  Klaus H. Hinrichs,et al.  Generating optimized marker-based rigid bodies for optical tracking systems , 2007, VISAPP.

[179]  B. Bussel,et al.  Evidence for Cognitive Processes Involved in the Control of Steady State of Walking in Healthy Subjects and after Cerebral Damage , 2005, Neurorehabilitation and neural repair.

[180]  Frank Steinicke,et al.  HapRing: A Wearable Haptic Device for 3D Interaction , 2015, Mensch & Computer.

[181]  Reinhard Koch,et al.  Geometric Calibration of Head-Mounted Displays and its Effects on Distance Estimation , 2012, IEEE Transactions on Visualization and Computer Graphics.

[182]  Robert J. Teather,et al.  Assessing the Effects of Orientation and Device on (Constrained) 3D Movement Techniques , 2008, 2008 IEEE Symposium on 3D User Interfaces.

[183]  M. Woollacott,et al.  Attention and the control of posture and gait: a review of an emerging area of research. , 2002, Gait & posture.

[184]  Jeff A. Johnson,et al.  The Xerox Star: a retrospective , 1989, Computer.

[185]  Gregory Goth Brave NUI world , 2011, CACM.

[186]  Nancy Staggers,et al.  Research Paper: Comparing Response Time, Errors, and Satisfaction Between Text-based and Graphical User Interfaces During Nursing Order Tasks , 2000, J. Am. Medical Informatics Assoc..

[187]  Gordon Kurtenbach,et al.  The design and evaluation of marking menus , 1993 .

[188]  A. Michael Noll Scanned-display computer graphics , 1971, CACM.

[189]  Simon Lessels,et al.  For Efficient Navigational Search, Humans Require Full Physical Movement, but Not a Rich Visual Scene , 2006, Psychological science.

[190]  John A. Roese,et al.  Stereoscopic viewing with PLZT ceramics , 1976 .

[191]  Sher ry Folsom-Meek,et al.  Human Performance , 2020, Nature.

[192]  Michael Burmester,et al.  AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität , 2003, MuC.

[193]  J. Wolpaw,et al.  Brain-Computer Interfaces: Principles and Practice , 2012 .

[194]  Ivan E. Sutherland,et al.  The Ultimate Display , 1965 .

[195]  I. Howard Perceiving in DepthVolume 3 Other Mechanisms of Depth Perception , 2012 .

[196]  Warren Robinett,et al.  The Visual Display Transformation for Virtual Reality , 1995, Presence: Teleoperators & Virtual Environments.

[197]  Frank Steinicke,et al.  The Interactive Spatial Surface - Blended Interaction on a Stereoscopic Multi-Touch Surface , 2014, Mensch & Computer Workshopband.

[198]  Jonathan W. Kelly,et al.  Perceived Space in the HTC Vive , 2017, ACM Trans. Appl. Percept..

[199]  Russell M. Taylor,et al.  VRPN: a device-independent, network-transparent VR peripheral system , 2001, VRST '01.

[200]  Jean-Baptiste de la Rivière,et al.  iliGHT 3D touch: a multiview multitouch surface for 3d content visualization and viewpoint sharing , 2010, ITS '10.

[201]  On the Late Invention of the Stereoscope , 1987, Perception.

[202]  Ben Shneiderman,et al.  Direct Manipulation: A Step Beyond Programming Languages , 1983, Computer.

[203]  Joseph J. LaViola,et al.  Pop through button devices for VE navigation and interaction , 2002, Proceedings IEEE Virtual Reality 2002.

[204]  Rustin Webster,et al.  Turn-Key Solutions: Virtual Reality , 2015 .

[205]  E. Heath Borg's Perceived Exertion and Pain Scales , 1998 .

[206]  Gerd Bruder,et al.  Safe-&-round: bringing redirected walking to small virtual reality laboratories , 2014, SUI.

[207]  Peng Song,et al.  A handle bar metaphor for virtual object manipulation with mid-air interaction , 2012, CHI.

[208]  Patrick Olivier,et al.  Building Interactive Multi-Touch Surfaces , 2009, J. Graphics, GPU, & Game Tools.

[209]  Klaus H. Hinrichs,et al.  Touching Floating Objects in Projection-based Virtual Reality Environments , 2010, EGVE/EuroVR/VEC.

[210]  Gavriel Salvendy,et al.  Handbook of Human Factors and Ergonomics , 2005 .

[211]  Bernhard E. Riecke,et al.  Upper Body Leaning can affect Forward Self-Motion Perception in Virtual Environments , 2015, SUI.

[212]  Sandra E Black,et al.  Effect of working memory and spatial attention tasks on gait in healthy young and older adults. , 2010, Motor control.

[213]  Alvin Jude,et al.  Personal space: user defined gesture space for GUI interaction , 2014, CHI Extended Abstracts.

[214]  Gerd Bruder,et al.  Walking in Virtual Reality , 2017, ACM Trans. Appl. Percept..

[215]  Kevin Arthur Effects of field of view on task performance with head-mounted displays , 1996, CHI Conference Companion.

[216]  Heinrich H. Bülthoff,et al.  Spatial updating in real and virtual environments: contribution and interaction of visual and vestibular cues , 2004, APGV '04.

[217]  Mark S. Sanders,et al.  Human Factors in Engineering and Design , 1957 .

[218]  Steve Bryson,et al.  Virtual Reality: A Definition History - A Personal Essay , 2013, ArXiv.

[219]  C. MacKenzie,et al.  Three-Dimensional Movement Trajectories in Fitts' Task: Implications for Control , 1987 .

[220]  Douglas A. Bowman,et al.  Interaction Techniques For Common Tasks In Immersive Virtual Environments - Design, Evaluation, And , 1999 .

[221]  Colin Potts,et al.  Design of Everyday Things , 1988 .

[222]  D. Simons,et al.  CHAPTER 13 – Change Blindness , 2005 .

[223]  Maud Marchal,et al.  Joyman: A human-scale joystick for navigating in virtual worlds , 2011, 2011 IEEE Symposium on 3D User Interfaces (3DUI).

[224]  Robert W. Lindeman,et al.  Silver Surfer: A system to compare isometric and elastic board interfaces for locomotion in VR , 2011, 2011 IEEE Symposium on 3D User Interfaces (3DUI).

[225]  Gerd Bruder,et al.  Estimation of Detection Thresholds for Redirected Walking Techniques , 2010, IEEE Transactions on Visualization and Computer Graphics.

[226]  I. Israël,et al.  Perception of two-dimensional, simulated ego-motion trajectories from optic flow , 2000, Vision Research.

[227]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[228]  Gerd Bruder,et al.  Comparing 3 D Interaction Performance in Comfortable and Uncomfortable Regions , 2013 .

[229]  Jesse Hoey,et al.  Extending interactions into hoverspace using reflected light , 2011, ITS '11.

[230]  James C. Chung,et al.  Intuitive navigation in the targeting of radiation therapy treatment beams , 1993 .

[231]  Gerd Bruder,et al.  Design and Evaluation of 3 D GUI Widgets for Stereoscopic Touch-Displays , 2013 .

[232]  Klaus H. Hinrichs,et al.  Transitional environments enhance distance perception in immersive virtual reality systems , 2009, APGV '09.

[233]  Hiroshi Ono,et al.  What does the dominant eye dominate? A brief and somewhat contentious review , 2003, Perception & psychophysics.

[234]  Meredith Ringel Morris,et al.  User-defined gestures for surface computing , 2009, CHI.

[235]  Gerd Bruder,et al.  Effects of visual conflicts on 3D selection task performance in stereoscopic display environments , 2013, 2013 IEEE Symposium on 3D User Interfaces (3DUI).

[236]  Frank Steinicke Fooling your senses: (super-)natural user interfaces for the ultimate display , 2017, SUI.

[237]  M. Halle Autostereoscopic displays and computer graphics , 1997, COMG.

[238]  Gordon Wetzstein,et al.  The light field stereoscope , 2015, ACM Trans. Graph..

[239]  L. M. Barker,et al.  Measuring and modeling the effects of fatigue on performance: Specific application to the nursing profession , 2009 .

[240]  Gerd Bruder,et al.  smARTbox: out-of-the-box technologies for interactive art and exhibition , 2012, VRIC '12.

[241]  Christopher D. Wickens,et al.  Identifying Black Swans in NextGen: Predicting Human Performance in Off-Nominal Conditions , 2009, Hum. Factors.

[242]  Yanqing Wang,et al.  Effects of Orientation Disparity Between Haptic and Graphic Displays of Objects in Virtual Environments , 1999, INTERACT.

[243]  Doug A. Bowman,et al.  Using Pinch Gloves(TM) for both Natural and Abstract Interaction Techniques in Virtual Environments , 2001 .

[244]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[245]  Mike Wu,et al.  Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays , 2003, UIST '03.

[246]  K. Aminian,et al.  Dual-task-related gait changes in the elderly: does the type of cognitive task matter? , 2005, Journal of motor behavior.

[247]  F. Bremmer,et al.  Perception of self-motion from visual flow , 1999, Trends in Cognitive Sciences.

[248]  Klaus H. Hinrichs,et al.  Hybrid traveling in fully-immersive large-scale geographic environments , 2007, VRST '07.

[249]  Chadwick A. Wingrave,et al.  Baseline Factors for Raycasting Selection , 2005 .

[250]  C. E. Rash,et al.  Helmet-mounted Displays: Sensation, Perception, and Cognition Issues , 2009 .

[251]  William S. Marras,et al.  Basic Biomechanics and Workstation Design , 2006 .

[252]  Mark R. Mine,et al.  Virtual Environment Interaction Techniques , 1995 .

[253]  Timo Ropinski,et al.  Object Selection in Virtual Environments using an Improved Virtual Pointer Metaphor , 2004, ICCVG.

[254]  Klaus H. Hinrichs,et al.  Augmentation techniques for efficient exploration in head-mounted display environments , 2010, VRST '10.

[255]  Klaus H. Hinrichs,et al.  Bimanual Interaction with Interscopic Multi-Touch Surfaces , 2009, INTERACT.

[256]  Donald A. Norman,et al.  Natural user interfaces are not natural , 2010, INTR.

[257]  Takeo Igarashi,et al.  Ninja cursors: using multiple cursors to assist target acquisition on large screens , 2008, CHI.

[258]  A. Murata,et al.  Extending Fitts' law to a three-dimensional pointing task. , 2001, Human movement science.

[259]  Robert Xiao,et al.  Augmenting the Field-of-View of Head-Mounted Displays with Sparse Peripheral Displays , 2016, CHI.

[260]  Ivan E. Sutherland,et al.  A head-mounted three dimensional display , 1968, AFIPS Fall Joint Computing Conference.

[261]  Klaus H. Hinrichs,et al.  2d touching of 3d stereoscopic objects , 2011, CHI.

[262]  Andreas Kunz,et al.  Eye tracking for locomotion prediction in redirected walking , 2016, 3DUI 2016.

[263]  M. Sheelagh T. Carpendale,et al.  Rotation and translation mechanisms for tabletop interaction , 2006, First IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP '06).

[264]  Andrew S. Forsberg,et al.  Aperture based selection for immersive virtual environments , 1996, UIST '96.

[265]  Frederick P. Brooks What's Real About Virtual Reality? , 1999, IEEE Computer Graphics and Applications.

[266]  Shumin Zhai,et al.  Human Performance in Six Degree of Freedom Input Control , 2002 .

[267]  Steven K. Feiner,et al.  The Flexible Pointer: An Interaction Technique for Selection in Augmented and Virtual Reality , 2003 .

[268]  Randy Pausch,et al.  Virtual reality on a WIM: interactive worlds in miniature , 1995, CHI '95.

[269]  Ivan Poupyrev,et al.  3D User Interfaces: Theory and Practice , 2004 .

[270]  Joseph J. LaViola,et al.  A discussion of cybersickness in virtual environments , 2000, SGCH.

[271]  Heinrich H. Bülthoff,et al.  Walking improves your cognitive map in environments that are large-scale and large in extent , 2011, TCHI.

[272]  Ian P. Howard,et al.  Spatial vision within egocentric and exocentric frames of reference , 1991 .

[273]  G. Borg Psychophysical bases of perceived exertion. , 1982, Medicine and science in sports and exercise.

[274]  William Buxton,et al.  The design of a GUI paradigm based on tablets, two-hands, and transparency , 1997, CHI.

[275]  Sharif Razzaque,et al.  Comparing VE locomotion interfaces , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[276]  William Buxton,et al.  A three-state model of graphical input , 1990, INTERACT.

[277]  James D. Hollan,et al.  Direct Manipulation Interfaces , 1985, Hum. Comput. Interact..

[278]  B. G. Cumming,et al.  Neural Mechanisms of Convergence and Accommodation , 1984 .

[279]  Josef F. Krems,et al.  Situation Awareness and Secondary Task Performance While Driving , 2007, HCI.

[280]  Doug A. Bowman,et al.  Formalizing the Design, Evaluation, and Application of Interaction Techniques for Immersive Virtual Environments , 1999, J. Vis. Lang. Comput..

[281]  Johnell O Brooks,et al.  Simulator sickness during driving simulation studies. , 2010, Accident; analysis and prevention.

[282]  Douglas T. Ross,et al.  Retrospectives I: the early years in computer graphics at MIT, Lincoln Lab, and Harvard , 1989, SIGGRAPH '89.

[283]  I. Scott MacKenzie,et al.  Performance differences in the fingers, wrist, and forearm in computer input control , 1997, CHI.

[284]  M. Jahoda,et al.  Predicting the past , 1982, Nature.

[285]  Antonio Krüger,et al.  Balloon selection revisited: multi-touch selection techniques for stereoscopic data , 2012, AVI.

[286]  Abigail Sellen,et al.  A study in interactive 3-D rotation using 2-D control devices , 1988, SIGGRAPH.

[287]  Philippe Coiffet,et al.  Virtual Reality Technology , 2003, Presence: Teleoperators & Virtual Environments.

[288]  Alan J. Dix Human-Computer Interaction , 2018, Encyclopedia of Database Systems.

[289]  Klaus H. Hinrichs,et al.  Taxonomy and Implementation of Redirection Techniques for Ubiquitous Passive Haptic Feedback , 2008, 2008 International Conference on Cyberworlds.

[290]  Zachary Wartell,et al.  Leveraging change blindness for redirection in virtual environments , 2011, 2011 IEEE Virtual Reality Conference.

[291]  Alessandro De Luca,et al.  CyberWalk: Enabling unconstrained omnidirectional walking through virtual environments , 2008, ACM Trans. Appl. Percept..

[292]  Michael J. Singer,et al.  Measuring Presence in Virtual Environments: A Presence Questionnaire , 1998, Presence.

[293]  Pourang Irani,et al.  Consumed endurance: a metric to quantify arm fatigue of mid-air interactions , 2014, CHI.

[294]  Karl H.E. Kroemer,et al.  Fitting The Task To The Human, Fifth Edition: A Textbook Of Occupational Ergonomics , 1997 .

[295]  Antonio Krüger,et al.  The 3rd dimension of CHI (3DCHI): touching and designing 3D user interfaces , 2012, CHI EA '12.

[296]  Benjamin Bolte,et al.  The Jumper Metaphor: An Effective Navigation Technique for Immersive Display Setups , 2011 .

[297]  Gerd Bruder,et al.  Analysis of direct selection in head-mounted display environments , 2014, 2014 IEEE Symposium on 3D User Interfaces (3DUI).

[298]  Sadeg M. Faris Novel 3D stereoscopic imaging technology , 1994, Electronic Imaging.

[299]  Franck Multon,et al.  Human Walking in Virtual Environments: perception, technology and applications , 2013 .

[300]  Gerd Bruder,et al.  Touching the Sphere: Leveraging Joint-Centered Kinespheres for Spatial User Interaction , 2016, SUI.

[301]  Sharif Razzaque,et al.  Redirected Walking , 2001, Eurographics.

[302]  Ken Shoemake,et al.  ARCBALL: a user interface for specifying three-dimensional orientation using a mouse , 1992 .

[303]  S. Lederman,et al.  TACTUAL PERCEPTION , 2003 .

[304]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[305]  E. A. Johnson Touch Displays: A Programmed Man-Machine Interface , 1967 .

[306]  VALKOV,et al.  Traveling in 3 D Virtual Environments with Foot Gestures and a Multi-Touch enabled , 2010 .

[307]  Steve Mann Intelligent Image Processing , 2001 .

[308]  Ivan Poupyrev,et al.  A framework and testbed for studying manipulation techniques for immersive VR , 1997, VRST '97.

[309]  Robert J. Teather,et al.  Visual aids in 3D point selection experiments , 2014, SUI.

[310]  Ferran Argelaguet,et al.  A survey of 3D object selection techniques for virtual environments , 2013, Comput. Graph..

[311]  Tovi Grossman,et al.  Pointing at trivariate targets in 3D environments , 2004, CHI.

[312]  Doug A. Bowman,et al.  Travel in immersive virtual environments: an evaluation of viewpoint motion control techniques , 1997, Proceedings of IEEE 1997 Annual International Symposium on Virtual Reality.

[313]  Klaus H. Hinrichs,et al.  Void shadows: multi-touch interaction with stereoscopic objects on the tabletop , 2014, SUI.