The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit.

[1]  E. Dabbs A spontaneous mutant of Escherichia coli with protein L24 lacking from the ribosome , 2004, Molecular and General Genetics MGG.

[2]  T. Steitz,et al.  Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. , 2003, RNA.

[3]  Thomas A Steitz,et al.  RNA, the first macromolecular catalyst: the ribosome is a ribozyme. , 2003, Trends in biochemical sciences.

[4]  Thomas A Steitz,et al.  Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. , 2003, Journal of molecular biology.

[5]  Joachim Frank,et al.  Locking and Unlocking of Ribosomal Motions , 2003, Cell.

[6]  William K. Ridgeway,et al.  X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Williamson,et al.  Inherent protein structural flexibility at the RNA-binding interface of L30e. , 2003, Journal of molecular biology.

[8]  Anders Liljas,et al.  Structure of the L1 protuberance in the ribosome , 2003, Nature Structural Biology.

[9]  A. Hüttenhofer,et al.  Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. , 2003, Nucleic acids research.

[10]  Poul Nissen,et al.  The structures of four macrolide antibiotics bound to the large ribosomal subunit. , 2002, Molecular cell.

[11]  T. Steitz,et al.  A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits , 2002, Nature Structural Biology.

[12]  V. Ramakrishnan,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. , 2002, Journal of molecular biology.

[13]  Elizabeth J. Tran,et al.  Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. , 2002, Nucleic acids research.

[14]  M. Hansen,et al.  Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria. , 2002, RNA.

[15]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[16]  A. Sali,et al.  Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome , 2001, Cell.

[17]  F. Schluenzen,et al.  Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria , 2001, Nature.

[18]  E. Koonin,et al.  Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins , 2001, Genome Biology.

[19]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[20]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[21]  A Yonath,et al.  Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 , 2001, The EMBO journal.

[22]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[23]  A. Mankin,et al.  A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  V. Ramakrishnan,et al.  The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit , 2000, Cell.

[25]  K. Hartmuth,et al.  Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. , 2000, Molecular cell.

[26]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[27]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[28]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[29]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[30]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[31]  M. Wahl,et al.  Crystal structure of ribosomal protein L4 shows RNA‐binding sites for ribosome incorporation and feedback control of the S10 operon , 2000, The EMBO journal.

[32]  T. Steitz,et al.  Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-A resolution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Barford,et al.  The Crystal Structure of Human Eukaryotic Release Factor eRF1—Mechanism of Stop Codon Recognition and Peptidyl-tRNA Hydrolysis , 2000, Cell.

[34]  M. Lu,et al.  5S rRNA断片と複合体形成した大腸菌リボソーム蛋白質L25の1.8Å分解能での構造 , 2000 .

[35]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit , 2000 .

[36]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[37]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[38]  David R. Gilbert,et al.  Motif-based searching in TOPS protein topology databases , 1999, Bioinform..

[39]  H. Noller,et al.  Ribosomal protein L15 as a probe of 50 S ribosomal subunit structure. , 1998, Journal of molecular biology.

[40]  A. Liljas,et al.  The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. , 1998, Structure.

[41]  R. Garrett,et al.  Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA. , 1998, Journal of molecular biology.

[42]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[43]  J A McCammon,et al.  Electrostatic contributions to the stability of halophilic proteins. , 1998, Journal of molecular biology.

[44]  Joachim Frank,et al.  A 9 Å Resolution X-Ray Crystallographic Map of the Large Ribosomal Subunit , 1998, Cell.

[45]  O. Dontsova,et al.  Effect of point mutations at position 89 of the E. coli 5S rRNA on the assembly and activity of the large ribosomal subunit , 1998, FEBS letters.

[46]  Joyce Li,et al.  Independent ligand-induced folding of the RNA-binding domain and two functionally distinct antitermination regions in the phage lambda N protein. , 1998, Molecular cell.

[47]  P. Moore,et al.  The three-dimensional structure of the ribosome and its components. , 1998, Annual review of biophysics and biomolecular structure.

[48]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[49]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[50]  V. Ramakrishnan,et al.  The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. , 1996, Structure.

[51]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[52]  Nobutoshi Ito,et al.  Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin , 1994, Nature.

[53]  A. Liljas,et al.  Three‐dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. , 1994, The EMBO journal.

[54]  B. Golden,et al.  Ribosomal protein L6: structural evidence of gene duplication from a primitive RNA binding protein. , 1993, The EMBO journal.

[55]  D. Crothers,et al.  Major groove accessibility of RNA. , 1993, Science.

[56]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[57]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[58]  H. Noller,et al.  Unusual resistance of peptidyl transferase to protein extraction procedures. , 1992, Science.

[59]  B. Matthews,et al.  Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. , 1992, Science.

[60]  R. Garrett,et al.  Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. , 1991, Journal of molecular biology.

[61]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[62]  D. Moras,et al.  Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp) , 1991, Science.

[63]  K. Nierhaus,et al.  The assembly of prokaryotic ribosomes. , 1991, Biochimie.

[64]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[65]  A. Liljas Comparative biochemistry and biophysics of ribosomal proteins. , 1991, International review of cytology.

[66]  T. Steitz,et al.  Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding , 1990, Quarterly Reviews of Biophysics.

[67]  K. Yamamoto,et al.  Solution structure of the glucocorticoid receptor DNA-binding domain. , 1990, Science.

[68]  T. Steitz,et al.  Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. , 1989, Science.

[69]  John E. Johnson,et al.  Icosahedral RNA virus structure. , 1989, Annual review of biochemistry.

[70]  R. Garrett,et al.  Domain VI of Escherichia coli 23 S ribosomal RNA. Structure, assembly and function. , 1988, Journal of molecular biology.

[71]  The binding site for ribosomal protein L2 within 23S ribosomal RNA of Escherichia coli. , 1988, The EMBO journal.

[72]  R. Garrett,et al.  Structure and accessibility of domain I of Escherichia coli 23 S RNA in free RNA, in the L24-RNA complex and in 50 S subunits. Implications for ribosomal assembly. , 1987, Journal of molecular biology.

[73]  K. Nierhaus,et al.  Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. , 1987, The Journal of biological chemistry.

[74]  R. Garrett,et al.  Evolutionary relationships amongst archaebacteria. A comparative study of 23 S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen. , 1987, Journal of molecular biology.

[75]  E. Dabbs Mutant Studies on the Prokaryotic Ribosome , 1986 .

[76]  G. Kramer,et al.  Structure, Function, and Genetics of Ribosomes , 1986, Springer Series in Molecular Biology.

[77]  Mutations within the 23S rRNA coding sequence of E. coli which block ribosome assembly. , 1985, The EMBO journal.

[78]  J. Dijk,et al.  The binding site for ribosomal protein complex L8 within 23 s ribosomal RNA of Escherichia coli. , 1984, The Journal of biological chemistry.

[79]  T. Blundell,et al.  Evolution and the tertiary structure of proteins. , 1984, Annual review of biophysics and bioengineering.

[80]  K. Nierhaus,et al.  Initiator proteins for the assembly of the 50S subunit from Escherichia coli ribosomes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[81]  P. Argos,et al.  Structural stability of halophilic proteins. , 1981, Biochemistry.

[82]  L. Sieker,et al.  The structure of rubredoxin at 1.2 A resolution. , 1979, Journal of molecular biology.

[83]  M. Yaguchi,et al.  Ribosomal assembly deficiency in an Escherichia coli thermosensitive mutant having an altered L24 ribosomal protein. , 1977, Journal of molecular biology.

[84]  F. Dohme,et al.  Assembly in vitro of the 50 S subunit from Escherichia coli ribosomes: proteins essential for the first heat-dependent conformational change. , 1977, Journal of molecular biology.

[85]  C. Chothia,et al.  Principles of protein–protein recognition , 1975, Nature.

[86]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.