Shape Sensitivity Analysis in Flow Models Using a Finite-Difference Approach

Reduced-order models have a number of practical engineering applications for unsteady flows that require either low-dimensional approximations for analysis and control or repeated simulation over a range of parameter values. The standard method for building reduced-order models uses the proper orthogonal decomposition (POD) and Galerkin projection. However, this standard method may be inaccurate when used “off-design” (at parameter values not used to generate the POD). This phenomena is exaggerated when parameter values describe the shape of the flow domain since slight changes in shape can have a significant influence on the flow field. In this paper, we investigate the use of POD sensitivity vectors to improve the accuracy and dynamical system properties of the reduced-order models to problems with shape parameters. To carry out this study, we consider flows past an elliptic cylinder with varying thickness ratios. Shape sensitivities (derivatives of flow variables with respect to thickness ratio) computed by finite-difference approximations are used to compute the POD sensitivity vectors. Numerical studies test the accuracy of the new bases to represent flow solutions over a range of parameter values.

[1]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[2]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[3]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[4]  Pierre Sagaut,et al.  Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow , 2003, Journal of Fluid Mechanics.

[5]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[6]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[7]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[8]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[9]  TadmorEitan Convergence of spectral methods for nonlinear conservation laws , 1989 .

[10]  Dominique Pelletier,et al.  On the use of Sensitivity Analysis to Improve Reduced-Order Models , 2008 .

[11]  J. Koseff,et al.  A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates , 1994 .

[12]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[13]  A. Hay,et al.  Reduced-Order Models for parameter dependent geometries based on Shape Sensitivity Analysis of the POD , 2008 .

[14]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[15]  Ali H. Nayfeh,et al.  A van der Pol–Duffing Oscillator Model of Hydrodynamic Forces on Canonical Structures , 2009 .

[16]  Imran Akhtar,et al.  Parallel Simulations, Reduced-Order Modeling, and Feedback Control of Vortex Shedding using Fluidic Actuators , 2008 .

[17]  J. Peraire,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART II-MODEL-BASED CONTROL , 1999 .

[18]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[19]  Richard Evelyn Donohue Bishop,et al.  The lift and drag forces on a circular cylinder in a flowing fluid , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  ’ GEORGES.TRIANTAFYLLOU,et al.  Three-dimensional dynamics and transition to turbulence in the wake of bluff objects , 2005 .

[21]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[22]  A. Hay,et al.  Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition , 2009, Journal of Fluid Mechanics.

[23]  R. Skop,et al.  On a theory for the vortex-excited oscillations of flexible cylindrical structures , 1975 .

[24]  R. Blevins,et al.  A Model for Vortex Induced Oscillation of Structures , 1974 .

[25]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[26]  Anil E. Deane,et al.  Low-dimensional description of the dynamics in separated flow past thick airfoils , 1991 .

[27]  Moshe Israeli,et al.  Efficient removal of boundary-divergence errors in time-splitting methods , 1989 .

[28]  Ali H. Nayfeh,et al.  On the stability and extension of reduced-order Galerkin models in incompressible flows , 2009 .

[29]  A. Roshko On the Wake and Drag of Bluff Bodies , 1955 .

[30]  R. Landl,et al.  A mathematical model for vortex-excited vibrations of bluff bodies , 1975 .

[31]  Ali H. Nayfeh,et al.  Modeling Steady-state and Transient Forces on a Cylinder , 2007 .

[32]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[33]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[34]  Nadine Aubry,et al.  Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..

[35]  John L. Lumley,et al.  Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow , 1967 .

[36]  AN EXPERIMENTAL INVESTIGATION OF STREAMWISE VORTICES IN THE WAKE OF A BLUFF BODY , 1994 .

[37]  I. G. Currie,et al.  Lift-Oscillator Model of Vortex-Induced Vibration , 1970 .

[38]  Søren Nielsen,et al.  Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations , 1999 .

[39]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[40]  Edriss S. Titi,et al.  Dissipativity of numerical schemes , 1991 .