A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking

We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal, computing efficiency, particle degeneracy/impoverishment and constrained/multi-modal systems. The second part of our review is on analyzing the intractable challenges raised within the general multitarget (multi-sensor) tracking due to random target birth and termination, false alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream multitarget PF approaches consist of two main classes, one based on M2T association approaches and the other not such as the finite set statistics-based PF. In either case, significant challenges remain due to unknown tracking scenarios and integrated tracking management.

[1]  T. Kirubarajan,et al.  Joint detection and tracking of unresolved targets with monopulse radar , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[2]  Branko Ristic,et al.  An Overview of Particle Methods for Random Finite Set Models , 2016, Inf. Fusion.

[3]  Hedibert F. Lopes,et al.  Particle filters and Bayesian inference in financial econometrics , 2011 .

[4]  Fahed Abdallah,et al.  An Introduction to Box Particle Filtering [Lecture Notes] , 2013, IEEE Signal Processing Magazine.

[5]  George W. Irwin,et al.  Multiple model bootstrap filter for maneuvering target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[6]  Martin David Adams,et al.  Relating Random Vector and Random Finite Set Estimation in Navigation, Mapping, and Tracking , 2017, IEEE Transactions on Signal Processing.

[7]  Juan M. Corchado,et al.  Fight sample degeneracy and impoverishment in particle filters: A review of intelligent approaches , 2013, Expert Syst. Appl..

[8]  Javier Bajo,et al.  Track a smoothly maneuvering target based on trajectory estimation , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[9]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[10]  Wen-Hua Chen,et al.  An Auxiliary Particle Filtering Algorithm With Inequality Constraints , 2017, IEEE Transactions on Automatic Control.

[11]  Juan M. Corchado,et al.  Multi-EAP: Extended EAP for multi-estimate extraction for SMC-PHD filter , 2017 .

[12]  Ángel F. García-Fernández,et al.  Bayesian Sequential Track Formation , 2014, IEEE Transactions on Signal Processing.

[13]  Mónica F. Bugallo,et al.  Sequential Monte Carlo methods under model uncertainty , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[14]  Ba-Ngu Vo,et al.  Improved SMC implementation of the PHD filter , 2010, 2010 13th International Conference on Information Fusion.

[15]  Javier Bajo,et al.  Effectiveness of Bayesian filters: An information fusion perspective , 2016, Inf. Sci..

[16]  Branko Ristic,et al.  Introduction to the Box Particle Filtering , 2013 .

[17]  Aboelmagd Noureldin,et al.  Clustered Mixture Particle Filter for Underwater Multitarget Tracking in Multistatic Active Sonobuoy Systems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[18]  Sean P. Meyn,et al.  Multivariable feedback particle filter , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  Ibrahim Hoteit,et al.  A Variational Bayesian Multiple Particle Filtering Scheme for Large-Dimensional Systems , 2016, IEEE Transactions on Signal Processing.

[20]  Branko Ristic,et al.  Target motion analysis with unknown measurement noise variance , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[21]  Lawrence M. Murray,et al.  GPU acceleration of the particle filter: the Metropolis resampler , 2012, ArXiv.

[22]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[23]  Prem K. Goel,et al.  Bayesian estimation via sequential Monte Carlo sampling - Constrained dynamic systems , 2007, Autom..

[24]  X. Rong Li,et al.  Hybrid grid multiple-model estimation with application to maneuvering target tracking , 2010, 2010 13th International Conference on Information Fusion.

[25]  Uwe D. Hanebeck,et al.  A likelihood-free particle filter for multi-obiect tracking , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[26]  Branko Ristic,et al.  A particle filter for joint detection and tracking of color objects , 2007, Image Vis. Comput..

[27]  Tiancheng Li,et al.  Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters , 2012, Signal Process..

[28]  Vikram Krishnamurthy,et al.  Integrated Tracking, Classification, and Sensor Management , 2013 .

[29]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[30]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[31]  Kai Li,et al.  Generalised particle filters with Gaussian measures , 2011, 2011 19th European Signal Processing Conference.

[32]  Biao Huang,et al.  Constrained particle filtering methods for state estimation of nonlinear process , 2014 .

[33]  Ali H. Sayed,et al.  Adaptive Networks , 2014, Proceedings of the IEEE.

[34]  Qing Han,et al.  Roughening methods to prevent sample impoverishment in the particle PHD filter , 2013, Proceedings of the 16th International Conference on Information Fusion.

[35]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[36]  N. Oudjane,et al.  Progressive correction for regularized particle filters , 2000, Proceedings of the Third International Conference on Information Fusion.

[37]  D. Avitzour Stochastic simulation Bayesian approach to multitarget tracking , 1995 .

[38]  Javier Bajo,et al.  Resampling methods for particle filtering: identical distribution, a new method, and comparable study , 2015, Frontiers of Information Technology & Electronic Engineering.

[39]  Juan M. Corchado,et al.  A particle dyeing approach for track continuity for the SMC-PHD filter , 2014, 17th International Conference on Information Fusion (FUSION).

[40]  Luca Martino,et al.  Group Importance Sampling for Particle Filtering and MCMC , 2017, Digit. Signal Process..

[41]  Petar M. Djuric,et al.  Resampling algorithms and architectures for distributed particle filters , 2005, IEEE Transactions on Signal Processing.

[42]  B. Jeren,et al.  Particle Filters in Decision Making Problems under Uncertainty , 2009 .

[43]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[44]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[45]  Mark R. Morelande,et al.  A Bayesian Approach to Multiple Target Detection and Tracking , 2007, IEEE Transactions on Signal Processing.

[46]  A. Doucet,et al.  A note on auxiliary particle filters , 2008 .

[47]  Petar M. Djuric,et al.  Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[48]  Jonathan Beaudeau,et al.  Non-centralized target tracking with mobile agents , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[49]  Petar M. Djuric,et al.  Likelihood Consensus and Its Application to Distributed Particle Filtering , 2011, IEEE Transactions on Signal Processing.

[50]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[51]  Dan Crisan,et al.  Particle-kernel estimation of the filter density in state-space models , 2011, 1111.5866.

[52]  Petar M. Djuric,et al.  Resampling Methods for Particle Filtering: Classification, implementation, and strategies , 2015, IEEE Signal Processing Magazine.

[53]  Henrik Ohlsson,et al.  Decentralized Particle Filter With Arbitrary State Decomposition , 2011, IEEE Transactions on Signal Processing.

[54]  Henk Wymeersch,et al.  Belief consensus algorithms for fast distributed target tracking in wireless sensor networks , 2012, Signal Process..

[55]  Tiancheng Li,et al.  Adapting sample size in particle filters through KLD-resampling , 2013, ArXiv.

[56]  Weidong Sheng,et al.  Tracking a large number of closely spaced objects based on the particle probability hypothesis density filter via optical sensor , 2011 .

[57]  Lawrence D. Stone,et al.  Bayesian Multiple Target Tracking , 1999 .

[58]  Simon J. Godsill,et al.  Gaussian flow sigma point filter for nonlinear Gaussian state-space models , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[59]  Petar M. Djuric,et al.  Sequential Estimation and Diffusion of Information Over Networks: A Bayesian Approach With Exponential Family of Distributions , 2017, IEEE Transactions on Signal Processing.

[60]  Debi Prosad Dogra,et al.  Autonomous detection and tracking under illumination changes, occlusions and moving camera , 2015, Signal Process..

[61]  P. Moral,et al.  Particle methods: An introduction with applications , 2014 .

[62]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[63]  G. Pulford Taxonomy of multiple target tracking methods , 2005 .

[64]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[65]  Luca Martino,et al.  Weighting a resampled particle in Sequential Monte Carlo , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[66]  N. Whiteley Stability properties of some particle filters , 2011, 1109.6779.

[67]  Drew D. Creal A Survey of Sequential Monte Carlo Methods for Economics and Finance , 2012 .

[68]  Michael G. Rabbat,et al.  Error Propagation in Gossip-Based Distributed Particle Filters , 2015, IEEE Transactions on Signal and Information Processing over Networks.

[69]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[70]  Biao Huang,et al.  On-line Bayesian parameter estimation in general non-linear state-space models: A tutorial and new results , 2013, 1307.3490.

[71]  Mónica F. Bugallo,et al.  Efficient Multiple Importance Sampling Estimators , 2015, IEEE Signal Processing Letters.

[72]  P. Moral,et al.  On adaptive resampling strategies for sequential Monte Carlo methods , 2012, 1203.0464.

[73]  Jason L. Williams,et al.  Approximate evaluation of marginal association probabilities with belief propagation , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[74]  Ángel F. García-Fernández,et al.  Trajectory probability hypothesis density filter , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[75]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[76]  R. Douc,et al.  Long-term stability of sequential Monte Carlo methods under verifiable conditions , 2012, 1203.6898.

[77]  Petar M. Djuric,et al.  Distributed Sequential Estimation in Asynchronous Wireless Sensor Networks , 2015, IEEE Signal Processing Letters.

[78]  Dieter Fox,et al.  Real-time particle filters , 2004, Proceedings of the IEEE.

[79]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[80]  Juan M. Corchado,et al.  Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity , 2014, 17th International Conference on Information Fusion (FUSION).

[81]  Jianyu Yang,et al.  A Computationally Efficient Particle Filter for Multitarget Tracking Using an Independence Approximation , 2013, IEEE Transactions on Signal Processing.

[82]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[83]  Simon J. Godsill,et al.  Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking , 2014, Digit. Signal Process..

[84]  Ba-Ngu Vo,et al.  Adaptive Target Birth Intensity for PHD and CPHD Filters , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[85]  Juan M. Corchado,et al.  Algorithm design for parallel implementation of the SMC-PHD filter , 2016, Signal Process..

[86]  P. Djurić,et al.  Target tracking by symbiotic particle filtering , 2010, 2010 IEEE Aerospace Conference.

[87]  R.J. Evans,et al.  Integrated track splitting filter - efficient multi-scan single target tracking in clutter , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[88]  Jason L. Williams,et al.  Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[89]  Jean-Yves Tourneret,et al.  A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements , 2007, IEEE Transactions on Signal Processing.

[90]  Ba-Ngu Vo,et al.  Bayesian Filtering With Random Finite Set Observations , 2008, IEEE Transactions on Signal Processing.

[91]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[92]  Juan M. Corchado,et al.  Numerical fitting‐based likelihood calculation to speed up the particle filter , 2013, 1308.2401.

[93]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[94]  Simon J. Godsill,et al.  Models and Algorithms for Tracking of Maneuvering Objects Using Variable Rate Particle Filters , 2007, Proceedings of the IEEE.

[95]  Fred Daum,et al.  Generalized particle flow for nonlinear filters , 2010, Defense + Commercial Sensing.

[96]  Xiao-Li Hu,et al.  A General Convergence Result for Particle Filtering , 2011, IEEE Transactions on Signal Processing.

[97]  Anthony N. Pettitt,et al.  A Sequential Monte Carlo Algorithm to Incorporate Model Uncertainty in Bayesian Sequential Design , 2014 .

[98]  Wolfgang Koch,et al.  The Pointillist Family of Multitarget Tracking Filters , 2015, 1505.08000.

[99]  H.A.P. Blom,et al.  Exact Bayesian and particle filtering of stochastic hybrid systems , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[100]  Vesselin P. Jilkov,et al.  Survey of maneuvering target tracking: decision-based methods , 2002, SPIE Defense + Commercial Sensing.

[101]  Aloysius K. Mok,et al.  Particle filtering on GPU architectures for manufacturing applications , 2015, Comput. Ind..

[102]  Ba-Ngu Vo,et al.  A Tutorial on Bernoulli Filters: Theory, Implementation and Applications , 2013, IEEE Transactions on Signal Processing.

[103]  M. Veloso,et al.  Multi-Object Tracking and Identification via Particle Filtering over Sets , 2017 .

[104]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[105]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[106]  Y. Bar-Shalom,et al.  Multitarget Tracking , 2015 .

[107]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[108]  Dan Crisan,et al.  Particle filters with random resampling times , 2012 .

[109]  Juan M. Corchado,et al.  Approximate Gaussian conjugacy: parametric recursive filtering under nonlinearity, multimodality, uncertainty, and constraint, and beyond , 2017, Frontiers of Information Technology & Electronic Engineering.

[110]  Ba-Ngu Vo,et al.  CPHD Filtering With Unknown Clutter Rate and Detection Profile , 2011, IEEE Transactions on Signal Processing.

[111]  Roy L. Streit,et al.  A Sequential Monte Carlo Method for Multi-target Tracking with the Intensity Filter , 2013 .

[112]  N. Gordon A hybrid bootstrap filter for target tracking in clutter , 1995, IEEE Transactions on Aerospace and Electronic Systems.

[113]  Philip Birch,et al.  An adaptive sample count particle filter , 2012, Comput. Vis. Image Underst..

[114]  Luca Martino,et al.  Effective sample size for importance sampling based on discrepancy measures , 2016, Signal Process..

[115]  Mónica F. Bugallo,et al.  Multiple particle filtering with improved efficiency and performance , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[116]  Biao Huang,et al.  Constrained Bayesian state estimation – A comparative study and a new particle filter based approach , 2010 .

[117]  X. Rong Li,et al.  A survey of maneuvering target tracking, part VIc: approximate nonlinear density filtering in discrete time , 2012, Defense + Commercial Sensing.

[118]  Richard E. Turner,et al.  Neural Adaptive Sequential Monte Carlo , 2015, NIPS.

[119]  Alvaro Soto,et al.  Self Adaptive Particle Filter , 2005, IJCAI.

[120]  Xiaohong Su,et al.  A new multi-target state estimation algorithm for PHD particle filter , 2010, 2010 13th International Conference on Information Fusion.

[121]  Petar M. Djuric,et al.  Adapting the Number of Particles in Sequential Monte Carlo Methods Through an Online Scheme for Convergence Assessment , 2015, IEEE Transactions on Signal Processing.

[122]  Fuchun Sun,et al.  Efficient visual tracking using particle filter with incremental likelihood calculation , 2012, Information Sciences.

[123]  Phani Chavali,et al.  Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking , 2014, Signal Process..

[124]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[125]  Ondřej Straka,et al.  A Survey of Sample Size Adaptation Techniques for Particle Filters , 2009 .

[126]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[127]  Roy Streit,et al.  How i learned to stop worrying about a thousand and one filters and love analytic combinatorics§ , 2017, 2017 IEEE Aerospace Conference.

[128]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[129]  Dongbing Gu,et al.  Consensus based distributed particle filter in sensor networks , 2008, 2008 International Conference on Information and Automation.

[130]  Christopher Nemeth,et al.  Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments , 2014, IEEE Transactions on Signal Processing.

[131]  Matthew West,et al.  Convergence of the Markov Chain Distributed Particle Filter (MCDPF) , 2013, IEEE Transactions on Signal Processing.

[132]  Mónica F. Bugallo,et al.  Multiple Particle Filtering , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[133]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[134]  Lennart Svensson,et al.  Labeling uncertainty in multitarget tracking , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[135]  Mark R. Morelande,et al.  Target tracking based on estimation of sets of trajectories , 2014, 17th International Conference on Information Fusion (FUSION).

[136]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[137]  Hui Zhang,et al.  Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models , 2012, Comput. Geosci..

[138]  Du Yong Kim,et al.  A Particle Multi-Target Tracker for Superpositional Measurements Using Labeled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[139]  Simo Särkkä,et al.  Moment conditions for convergence of particle filters with unbounded importance weights , 2014, Signal Process..

[140]  Y. Boers,et al.  Interacting multiple model particle filter , 2003 .

[141]  Sirish L. Shah,et al.  Nonlinear Bayesian state estimation: A review of recent developments , 2012 .

[142]  Javier Bajo,et al.  On the Bias of the SIR Filter in Parameter Estimation of the Dynamics Process of State Space Models , 2015, DCAI.

[143]  Lakhmi C. Jain,et al.  Advances in Intelligent Signal Processing and Data Mining: Theory and Applications , 2013 .

[144]  Simon J. Godsill,et al.  Improvement Strategies for Monte Carlo Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[145]  Souad Chebbi,et al.  On the Convergence of Constrained Particle Filters , 2017, IEEE Signal Processing Letters.

[146]  Qiang Fu,et al.  Impact of Mode Decision Delay on Estimation Error for Maneuvering Target Interception , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[147]  Felix Govaers,et al.  Track maintenance using the SMC-intensity filter , 2012, 2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[148]  Luca Martino,et al.  Cooperative parallel particle filters for online model selection and applications to urban mobility , 2015, Digit. Signal Process..

[149]  Petar M. Djuric,et al.  Distributed particle filtering in agent networks: A survey, classification, and comparison , 2013, IEEE Signal Processing Magazine.

[150]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[151]  M. Adès,et al.  An exploration of the equivalent weights particle filter , 2013 .

[152]  X. Rong Li,et al.  A survey of maneuvering target tracking-part VIb: approximate nonlinear density filtering in mixed time , 2010, Defense + Commercial Sensing.

[153]  Neil J. Gordon,et al.  The kalman-levy filter and heavy-tailed models for tracking manoeuvring targets , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[154]  Ángel F. García-Fernández,et al.  Two-Layer Particle Filter for Multiple Target Detection and Tracking , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[155]  Jukka Corander,et al.  Layered adaptive importance sampling , 2015, Statistics and Computing.

[156]  Petar M. Djuric,et al.  A novel algorithm for adapting the number of particles in particle filtering , 2016, 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

[157]  William Fitzgerald,et al.  A Bayesian approach to tracking multiple targets using sensor arrays and particle filters , 2002, IEEE Trans. Signal Process..

[158]  Erik Blasch,et al.  Random-point-based filters: analysis and comparison in target tracking , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[159]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[160]  Robert Babuska,et al.  Saturated Particle Filter: Almost sure convergence and improved resampling , 2013, Autom..

[161]  Darryl Morrell,et al.  Sequential Monte Carlo Methods for Tracking Multiple Targets With Deterministic and Stochastic Constraints , 2008, IEEE Transactions on Signal Processing.

[162]  Y. Boers,et al.  Efficient particle filter for jump Markov nonlinear systems , 2005 .

[163]  Dongbing Gu Distributed Particle Filter for Target Tracking , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[164]  Mónica F. Bugallo,et al.  Heretical Multiple Importance Sampling , 2016, IEEE Signal Processing Letters.

[165]  A. Hero,et al.  Multitarget tracking using the joint multitarget probability density , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[166]  Juan M. Corchado,et al.  Convergence of Distributed Flooding and Its Application for Distributed Bayesian Filtering , 2017, IEEE Transactions on Signal and Information Processing over Networks.

[167]  Martin Bouchard,et al.  A Modified Rao-Blackwellised Particle Filter , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[168]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[169]  Karl Granström,et al.  Extended Object Tracking: Introduction, Overview and Applications , 2016, ArXiv.