Identifying Conservation‐Priority Areas in the Tropics: a Land‐Use Change Modeling Approach

: Most quantitative methods for identifying conservation-priority areas require more detailed knowledge about the extent and distribution of biodiversity than is currently available. Accelerated and irreversible losses of biodiversity call for the development of alternative methods to identify priority sites for biodiversity inventory and protection. We focused on the state of Arunachal Pradesh, a biodiversity-rich region in northeast India. We used a geographic information system and spatially explicit modeling to examine the correlation of land-cover and land-use patterns with biogeophysical characteristics and to project future patterns of land-use change. In 1988, 70% of Arunachal Pradesh was covered by forest. We project that 50% of the state's 1988 forest will be lost by 2021, based on anticipated growth of the human population and resulting resource use. Of the total simulated deforestation, 76% occurs in areas that have no legal state protection. We developed a map of threats to biodiversity that divides areas that were forested in 1988 into four categories: (1) susceptible to future deforestation and currently unprotected; (2) susceptible to future deforestation but currently within the protected-area network; (3) not susceptible to future deforestation and protected; and (4) neither susceptible to future deforestation nor currently protected. We make the following recommendations based on our analyses. Areas in category 1 should be a high priority for biodiversity inventory and conservation action. Areas in category 2 should have rigid enforcement of protection. Areas in category 3 are locations of relatively low priority for enforcement. Areas in category 4 that have a high conservation potential are politically the easiest to include in the protected-area network and should be protected before they become targets of future land-use change. Reserve forests—forests managed by the state forest department for a variety of purposes, including selective logging for timber harvesting—are predominantly located in areas susceptible to land-use change and are prime candidates for upgrading of protection status. Resumen: La mayoria de los metodos cuantitativos para identificar areas prioritarias de conservacion requieren de conocimiento mas detallado que el que actualmente se tiene acerca de la magnitud y distribucion de la biodiversidad. La perdida acelerada e irreversible de biodiversidad exige el desarrollo de metodos alternativos para identificar sitios prioritarios para inventariar y proteger la biodiversidad. Enfocamos el estado de Arunachal Pradesh, una region rica en biodiversidad del noreste de India. Utilizamos SIG y modelos espacialmente explicitos para examinar la correlacion de superficie y patrones de uso del suelo con caracteristicas biogeofisicas y para proyectar patrones futuros de cambio en el uso del suelo. En 1988, el 70% de Arunachal Pradesh estaba cubierto por bosques. Proyectamos que 50% de los bosques de 1988 se perdera para 2021 con base en el crecimiento esperado de la poblacion humana y la resultante utilizacion de recursos. Del total de deforestacion simulada, 76% ocurre en areas que no tienen ninguna proteccion legal. Elaboramos un mapa de amenazas a la biodiversidad que divide en cuatro categorias a las areas boscosas en 1988: 1) susceptible a deforestacion en el futuro y no protegida actualmente; 2) susceptible a deforestacion en el futuro pero actualmente en la red de areas protegidas; 3) no susceptible a deforestacion en el futuro y protegida y 4) ni susceptible a deforestacion en el futuro ni protegida actualmente. Hacemos las siguientes recomendaciones basadas en nuestros analisis. Las areas en la categoria 1 deben tener una prioridad alta para inventarios y acciones de conservacion. En las areas de la categoria 2 la proteccion debe ser de observancia forzosa. Las areas en la categoria 3 son de baja prioridad relativa para la observancia forzosa. Las areas en la categoria 4, que tienen un alto potencial de conservacion, son politicamente las mas faciles de incluir en la red de areas protegidas, lo cual debe hacerse antes de que se conviertan en blanco de cambios futuros en el uso del suelo. Las reservas de bosque (manejadas por el departamento forestal del estado para diversos propositos, incluyendo la tala selectiva para madera) se localizan predominantemente en areas susceptibles a cambios en el uso del suelo y son candidatas selectas para elevar su estatus de proteccion.

[1]  Robert L. Pressey,et al.  From representation to persistence: requirements for a sustainable system of conservation areas in the species‐rich mediterranean‐climate desert of southern Africa , 1999 .

[2]  H. Luh,et al.  Hotspots and species diversity , 1994, Nature.

[3]  Ian Oliver,et al.  Designing a Cost‐Effective Invertebrate Survey: A Test of Methods for Rapid Assessment of Biodiversity , 1996 .

[4]  Denis White,et al.  Assessing Risks to Biodiversity from Future Landscape Change , 1997 .

[5]  Hanqin Tian,et al.  Modelling spatial and temporal patterns of tropical land use change , 1995 .

[6]  R. Primack,et al.  Essentials of Conservation Biology , 1994 .

[7]  M. Gadgil Conserving biodiversity as if people matter: a case study from India , 1992 .

[8]  Jorgen B. Thomsen,et al.  Biodiversity Hotspots and Major Tropical Wilderness Areas: Approaches to Setting Conservation Priorities , 1998 .

[9]  Kamaljit S. Bawa,et al.  A Vegetation Based Approach to Biodiversity Gap Analysis in the Agastyamalai Region, Western Ghats, India , 1997 .

[10]  A. Dobson,et al.  Geographic Distribution of Endangered Species in the United States , 1997, Science.

[11]  Amy W. Ando,et al.  Species distributions, land values, and efficient conservation , 1998, Science.

[12]  W. Reid,et al.  Keeping Options Alive: The Scientific Basis for Conserving Biodiversity , 1989 .

[13]  Stuart L. Pimm,et al.  Planning for Biodiversity , 1998, Science.

[14]  D. Olson,et al.  The Global 200: A Representation Approach to Conserving the Earth’s Most Biologically Valuable Ecoregions , 1998 .

[15]  Robert L. Pressey,et al.  A Comparison of Richness Hotspots, Rarity Hotspots, and Complementary Areas for Conserving Diversity of British Birds , 1996 .

[16]  R L Pressey,et al.  Beyond opportunism: Key principles for systematic reserve selection. , 1993, Trends in ecology & evolution.

[17]  A. Veldkamp,et al.  Exploring land use scenarios, an alternative approach based on actual land use , 1997 .

[18]  A. Balmford,et al.  Across‐Country Analyses of Biodiversity Congruence and Current Conservation Effort in the Tropics , 1995 .

[19]  Ian Oliver,et al.  A Possible Method for the Rapid Assessment of Biodiversity , 1993 .

[20]  N. Myers,et al.  The biodiversity challenge: Expanded hot-spots analysis , 1990, The Environmentalist.

[21]  Simon Ferrier,et al.  How well protected are the forests of north-eastern New South Wales? − Analyses of forest environments in relation to formal protection measures, land tenure, and vulnerability to clearing , 1996 .

[22]  K. Rutchey,et al.  ANALYSIS AND SIMULATIONS OF FRAGMENTATION PATTERNS IN THE EVERGLADES , 1997 .

[23]  A. Veldkamp,et al.  CLUE: a conceptual model to study the Conversion of Land Use and its Effects , 1996 .