Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome.

[1]  Devin K. Schweppe,et al.  CysDB: a human cysteine database based on experimental quantitative chemoproteomics. , 2023, Cell chemical biology.

[2]  E. Weerapana,et al.  Redox proteomics combined with proximity labeling enables monitoring of localized cysteine oxidation in cells. , 2023, Cell chemical biology.

[3]  Landon R. Whitby,et al.  Proteomic discovery of chemical probes that perturb protein complexes in human cells , 2022, bioRxiv.

[4]  Cathy H. Wu,et al.  UniProt: the Universal Protein Knowledgebase in 2023 , 2022, Nucleic Acids Res..

[5]  Tony P. Huang,et al.  Assigning functionality to cysteines by base editing of cancer dependency genes , 2022, bioRxiv.

[6]  A. Nairn,et al.  Deciphering Spatial Protein–Protein Interactions in Brain Using Proximity Labeling , 2022, Molecular & cellular proteomics : MCP.

[7]  Ajit S. Divakaruni,et al.  A practical guide for the analysis, standardization and interpretation of oxygen consumption measurements , 2022, Nature Metabolism.

[8]  Zhengzheng Fei,et al.  A modification-centric assessment tool for the performance of chemoproteomic probes , 2022, Nature Chemical Biology.

[9]  Yang Luo,et al.  Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID. , 2022, Molecular cell.

[10]  T. Cover,et al.  An infection-induced oxidation site regulates legumain processing and tumor growth , 2022, Nature Chemical Biology.

[11]  Jing Yang Oxidize me to the space , 2022, Nature Chemical Biology.

[12]  Alexander W. Sun,et al.  SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State–Dependent Redox-Sensitive Cysteines , 2022, Molecular & cellular proteomics : MCP.

[13]  S. Gygi,et al.  Interrogating Kinase-Substrate Relationships with Proximity Labeling and Phosphorylation Enrichment. , 2022, Journal of proteome research.

[14]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[15]  Daniel A. Polasky,et al.  Enhancing Cysteine Chemoproteomic Coverage through Systematic Assessment of Click Chemistry Product Fragmentation. , 2021, Analytical chemistry.

[16]  Kai Huang,et al.  ATPAF1 deficiency impairs ATP synthase assembly and mitochondrial respiration. , 2021, Mitochondrion.

[17]  Christopher G. Parker,et al.  Proximity Tagging Identifies the Glycan-Mediated Glycoprotein Interactors of Galectin-1 in Muscle Stem Cells. , 2021, ACS chemical biology.

[18]  Peng R. Chen,et al.  Spatiotemporally resolved subcellular phosphoproteomics , 2021, Proceedings of the National Academy of Sciences.

[19]  M. Zeviani,et al.  Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis , 2021, Cells.

[20]  Keriann M. Backus,et al.  Multiplexed CuAAC Suzuki-Miyaura Labeling for Tandem Activity-Based Chemoproteomic Profiling. , 2021, Analytical chemistry.

[21]  Devin K. Schweppe,et al.  Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries , 2021, Nature Biotechnology.

[22]  Keriann M. Backus,et al.  SP3‐FAIMS Chemoproteomics for High‐Coverage Profiling of the Human Cysteinome ** , 2020, Chembiochem : a European journal of chemical biology.

[23]  I. Cheeseman,et al.  Identification of a Golgi-localized peptide reveals a minimal Golgi-targeting motif , 2020, bioRxiv.

[24]  W. Qian,et al.  Characterization of cellular oxidative stress response by stoichiometric redox proteomics. , 2020, American journal of physiology. Cell physiology.

[25]  Stavroula K. Hatzios,et al.  Chemical tools for decoding redox signaling at the host–microbe interface , 2020, PLoS pathogens.

[26]  A. Salomon,et al.  Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. , 2020, Journal of proteome research.

[27]  Fengchao Yu,et al.  IonQuant Enables Accurate and Sensitive Label-Free Quantification With FDR-Controlled Match-Between-Runs , 2020, bioRxiv.

[28]  Xianwei Wang,et al.  Innate-adaptive immunity interplay and redox regulation in immune response , 2020, Redox biology.

[29]  S. Schreiber,et al.  An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells , 2020, Cell.

[30]  F. He,et al.  A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes , 2020, Nature Protocols.

[31]  Alexey I. Nesvizhskii,et al.  Philosopher: a versatile toolkit for shotgun proteomics data analysis , 2020, Nature Methods.

[32]  Yanling Zhang,et al.  Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages. , 2020, Journal of the American Chemical Society.

[33]  K. Roux,et al.  Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation , 2020, Cells.

[34]  S. Carr,et al.  Split-TurboID enables contact-dependent proximity labeling in cells , 2020, Proceedings of the National Academy of Sciences.

[35]  Devin K. Schweppe,et al.  A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging , 2020, Cell.

[36]  P. Ivanov,et al.  Spatio-temporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis , 2020, bioRxiv.

[37]  Chun Xing Li,et al.  Profiling cysteine reactivity and oxidation in the endoplasmic reticulum. , 2020, ACS chemical biology.

[38]  D. Svergun,et al.  Structural properties of [2Fe-2S] ISCA2-IBA57: a complex of the mitochondrial iron-sulfur cluster assembly machinery , 2019, Scientific Reports.

[39]  Keriann M. Backus,et al.  Opportunities and challenges for the development of covalent chemical immunomodulators. , 2019, Bioorganic & medicinal chemistry.

[40]  Yanling Zhang,et al.  S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate , 2019, Nature Chemical Biology.

[41]  A. Hale,et al.  Nitric Oxide Modulates Metabolic Remodeling in Inflammatory Macrophages through TCA Cycle Regulation and Itaconate Accumulation , 2019, Cell reports.

[42]  E. Weerapana,et al.  Reactive-cysteine profiling for drug discovery. , 2019, Current opinion in chemical biology.

[43]  F. Gueler,et al.  Human and murine macrophages exhibit differential metabolic responses to lipopolysaccharide - A divergent role for glycolysis , 2019, Redox biology.

[44]  R. Hartley,et al.  Mitochondria as a therapeutic target for common pathologies , 2018, Nature Reviews Drug Discovery.

[45]  Howard Y. Chang,et al.  Atlas of Subcellular RNA Localization Revealed by APEX-Seq , 2018, Cell.

[46]  Christopher S. Hughes,et al.  Single-pot, solid-phase-enhanced sample preparation for proteomics experiments , 2018, Nature Protocols.

[47]  L. Banci,et al.  IBA57 Recruits ISCA2 to Form a [2Fe-2S] Cluster-Mediated Complex. , 2018, Journal of the American Chemical Society.

[48]  A. Alayash,et al.  Site-directed mutagenesis of cysteine residues alters oxidative stability of fetal hemoglobin☆ , 2018, Redox biology.

[49]  N. Perrimon,et al.  Efficient proximity labeling in living cells and organisms with TurboID , 2018, Nature Biotechnology.

[50]  Fan Yang,et al.  A Dimethyl-Labeling-Based Strategy for Site-Specifically Quantitative Chemical Proteomics. , 2018, Analytical chemistry.

[51]  H. Reza,et al.  Pretreatment With Risperidone Ameliorates Systemic LPS-Induced Oxidative Stress in the Cortex and Hippocampus , 2018, Front. Neurosci..

[52]  E. Gottlieb,et al.  Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress , 2018, Nature Communications.

[53]  Anne-Claude Gingras,et al.  High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. , 2018, Molecular cell.

[54]  Gene W. Yeo,et al.  Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules , 2018, Cell.

[55]  E. Weerapana,et al.  Chemical Probes for Redox Signaling and Oxidative Stress. , 2017, Antioxidants & redox signaling.

[56]  M. Cygler,et al.  Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex , 2017, Nature Communications.

[57]  Benjamin F. Cravatt,et al.  Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer , 2017, Cell.

[58]  R. Sitia,et al.  Cysteines as Redox Molecular Switches and Targets of Disease , 2017, Front. Mol. Neurosci..

[59]  L. O’Neill,et al.  Macrophage Immunometabolism: Where Are We (Going)? , 2017, Trends in immunology.

[60]  David Lindenmayer,et al.  A subcellular map of the human proteome , 2017, Science.

[61]  Alexey I Nesvizhskii,et al.  MSFragger: ultrafast and comprehensive peptide identification in shotgun proteomics , 2017, Nature Methods.

[62]  E. Weerapana,et al.  Identifying Functional Cysteine Residues in the Mitochondria. , 2017, ACS chemical biology.

[63]  Juan Antonio Vizcaíno,et al.  The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition , 2016, Nucleic Acids Res..

[64]  A. D. de Vos,et al.  Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. , 2016, Cell reports.

[65]  R. Xavier,et al.  Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages , 2016, Cell.

[66]  A. Olson,et al.  Proteome-wide covalent ligand discovery in native biological systems , 2016, Nature.

[67]  D. Vertommen,et al.  Comprehensively Characterizing the Thioredoxin Interactome In Vivo Highlights the Central Role Played by This Ubiquitous Oxidoreductase in Redox Control* , 2016, Molecular & Cellular Proteomics.

[68]  Tong Zhang,et al.  Identification of thioredoxin targets in guard cell enriched epidermal peels using cysTMT proteomics. , 2016, Journal of proteomics.

[69]  M. Arkin,et al.  Covalent targeting of acquired cysteines in cancer. , 2016, Current opinion in chemical biology.

[70]  J. Smeekens,et al.  Systematic study of the dynamics and half-lives of newly synthesized proteins in human cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc03826j , 2015, Chemical science.

[71]  N. Chandel Evolution of Mitochondria as Signaling Organelles. , 2015, Cell metabolism.

[72]  Edward T Chouchani,et al.  Disabling Mitochondrial Peroxide Metabolism via Combinatorial Targeting of Peroxiredoxin 3 as an Effective Therapeutic Approach for Malignant Mesothelioma , 2015, PloS one.

[73]  J. Riemer,et al.  Thiol switches in mitochondria: operation and physiological relevance , 2015, Biological chemistry.

[74]  Brian C. Jackson,et al.  Human ALDH1B1 Polymorphisms may Affect the Metabolism of Acetaldehyde and All-trans retinaldehyde—In Vitro Studies and Computational Modeling , 2015, Pharmaceutical Research.

[75]  Apostolos Malatras,et al.  CellWhere: graphical display of interaction networks organized on subcellular localizations , 2015, Nucleic Acids Res..

[76]  F. Gräter,et al.  A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. , 2015, Nature chemical biology.

[77]  J. L. Le Caer,et al.  Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols , 2015, Nature Communications.

[78]  Maxim N. Artyomov,et al.  Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation , 2014, Nature Immunology.

[79]  Rona S. Gertner,et al.  Single cell RNA Seq reveals dynamic paracrine control of cellular variation , 2014, Nature.

[80]  V. Lushchak,et al.  Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species , 2014, Redox report : communications in free radical research.

[81]  Young Ho Suh,et al.  DJ-1 associates with lipid rafts by palmitoylation and regulates lipid rafts-dependent endocytosis in astrocytes. , 2013, Human molecular genetics.

[82]  Dean P. Jones,et al.  Selective Targeting of the Cysteine Proteome by Thioredoxin and Glutathione Redox Systems , 2013, Molecular & Cellular Proteomics.

[83]  Linda Partridge,et al.  Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I , 2013, Nature Medicine.

[84]  Daniel N. Wilson,et al.  Structures of the human and Drosophila 80S ribosome , 2013, Nature.

[85]  Liang Zheng,et al.  Succinate is an inflammatory signal that induces IL-1β through HIF-1α , 2013, Nature.

[86]  Kate S. Carroll,et al.  Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery , 2013, Chemical reviews.

[87]  D. Babu,et al.  TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. , 2012, Current pharmaceutical design.

[88]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[89]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[90]  J. Silberg,et al.  The DNLZ/HEP zinc‐binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9 , 2012, Protein science : a publication of the Protein Society.

[91]  A. Fisher,et al.  Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A₂ activities. , 2011, Antioxidants & redox signaling.

[92]  H. Erdjument-Bromage,et al.  TLR signaling augments macrophage bactericidal activity through mitochondrial ROS , 2011, Nature.

[93]  Y. Go,et al.  Redox compartmentalization and cellular stress , 2010, Diabetes, obesity & metabolism.

[94]  David Baker,et al.  Quantitative reactivity profiling predicts functional cysteines in proteomes , 2010, Nature.

[95]  D. Trinh,et al.  Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer , 2010, Oncogene.

[96]  Tilman Schneider-Poetsch,et al.  Inhibition of Eukaryotic Translation Elongation by Cycloheximide and Lactimidomycin , 2010, Nature chemical biology.

[97]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[98]  Dean P. Jones,et al.  Redox compartmentalization in eukaryotic cells. , 2008, Biochimica et biophysica acta.

[99]  T. Fehm,et al.  Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1 , 2008, Breast Cancer Research.

[100]  J. Strahler,et al.  Quantifying changes in the thiol redox proteome upon oxidative stress in vivo , 2008, Proceedings of the National Academy of Sciences.

[101]  M. Toledano,et al.  ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis , 2007, Nature Reviews Molecular Cell Biology.

[102]  K. Kavanagh,et al.  Reversible Sequestration of Active Site Cysteines in a 2Fe-2S-bridged Dimer Provides a Mechanism for Glutaredoxin 2 Regulation in Human Mitochondria* , 2007, Journal of Biological Chemistry.

[103]  L. Tjernberg,et al.  Degradation of the Amyloid β-Protein by the Novel Mitochondrial Peptidasome, PreP*♦ , 2006, Journal of Biological Chemistry.

[104]  S. Snyder,et al.  Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[105]  K. Fukuda,et al.  LPS-induced ROS generation and changes in glutathione level and their relation to the maturation of human monocyte-derived dendritic cells. , 2006, Life sciences.

[106]  N. Isaacs,et al.  Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. , 2005, Structure.

[107]  E. Cadenas,et al.  Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione. , 2005, Biochemistry.

[108]  D. Jahn,et al.  Oxygen-dependent Coproporphyrinogen III Oxidase (HemF) from Escherichia coli Is Stimulated by Manganese* , 2003, Journal of Biological Chemistry.

[109]  William C Hahn,et al.  Lentivirus-delivered stable gene silencing by RNAi in primary cells. , 2003, RNA.

[110]  H. Miziorko,et al.  Investigation of the oligomeric status of the peroxisomal isoform of human 3-hydroxy-3-methylglutaryl-CoA lyase. , 2002, Archives of biochemistry and biophysics.

[111]  A. Dejean,et al.  The Nucleoporin RanBP2 Has SUMO1 E3 Ligase Activity , 2002, Cell.

[112]  A. Golestani,et al.  Interaction of hexokinase with the outer mitochondrial membrane and a hydrophobic matrix , 2001, Molecular and Cellular Biochemistry.

[113]  Solomon H. Snyder,et al.  The Biotin Switch Method for the Detection of S-Nitrosylated Proteins , 2001, Science's STKE.

[114]  S. Takeshita,et al.  TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. , 2000, The Journal of clinical investigation.

[115]  D. Kalvakolanu,et al.  Gamma Interferon Augments Macrophage Activation by Lipopolysaccharide by Two Distinct Mechanisms, at the Signal Transduction Level and via an Autocrine Mechanism Involving Tumor Necrosis Factor Alpha and Interleukin-1 , 1999, Infection and Immunity.

[116]  M. Gurney,et al.  Increased 3‐nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation , 1997, Annals of neurology.

[117]  S. Snyder,et al.  Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[118]  S. Snyder,et al.  Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. , 1993, The Journal of biological chemistry.

[119]  D. Horne,et al.  Uptake of biotin by isolated rat liver mitochondria. , 1992, The American journal of physiology.

[120]  A. Garber,et al.  The effect of cycloheximide on the interaction between mitochondrial respiration and gluconeogenesis in guinea pig and rat liver. , 1973, The Journal of biological chemistry.

[121]  D. Dube,et al.  Effects of emetine and cycloheximide on mitochondrial protein synthesis in different systems. , 1972, The Biochemical journal.

[122]  Christian M. Metallo,et al.  Quantifying Intermediary Metabolism and Lipogenesis in Cultured Mammalian Cells Using Stable Isotope Tracing and Mass Spectrometry. , 2019, Methods in molecular biology.

[123]  E. Latz,et al.  Immortalization of Murine Bone Marrow-Derived Macrophages. , 2018, Methods in molecular biology.

[124]  R. Blasczyk,et al.  Cell-type-specific downregulation of heme oxygenase-1 by lipopolysaccharide via Bach1 in primary human mononuclear cells. , 2015, Free radical biology & medicine.

[125]  Ajit S. Divakaruni,et al.  Analysis and interpretation of microplate-based oxygen consumption and pH data. , 2014, Methods in enzymology.

[126]  Supplementary Text: Mechanistic Investigation of Apex2 , 2022 .