Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms.

[1]  R. Sharan,et al.  Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. , 2003, Genome research.

[2]  J. Barrett,et al.  New IBD genetics: common pathways with other diseases , 2011, Gut.

[3]  M. Genovese,et al.  LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-of-concept study. , 2010, Arthritis and rheumatism.

[4]  Judy H. Cho,et al.  Effector CD4+ T Cell Expression Signatures and Immune-Mediated Disease Associated Genes , 2012, PloS one.

[5]  Graham M Lord,et al.  The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes , 2009, Proceedings of the National Academy of Sciences.

[6]  Retinoic Acid Increases Foxp3+ Regulatory T Cells and Inhibits Development of Th17 Cells by Enhancing TGF-β-Driven Smad3 Signaling and Inhibiting IL-6 and IL-23 Receptor Expression1 , 2008, The Journal of Immunology.

[7]  Pui-Yan Kwok,et al.  Genomewide Scan Reveals Association of Psoriasis with IL-23 and NF-κB Pathways , 2008, Nature Genetics.

[8]  Raja Jothi,et al.  Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. , 2011, Immunity.

[9]  A. Regev,et al.  Dynamic regulatory network controlling Th17 cell differentiation , 2013, Nature.

[10]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[11]  William Stafford Noble,et al.  Quantifying similarity between motifs , 2007, Genome Biology.

[12]  Marc Vandemeulebroecke,et al.  Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial , 2012, Gut.

[13]  S. Rutz,et al.  A Genomic Regulatory Element That Directs Assembly and Function of Immune-Specific AP-1–IRF Complexes , 2012, Science.

[14]  W. Ouwehand,et al.  Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. , 2010, Cell stem cell.

[15]  D. Patel,et al.  Effect of IL-17A blockade with secukinumab in autoimmune diseases , 2012, Annals of the rheumatic diseases.

[16]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[17]  Richard Bonneau,et al.  A Validated Regulatory Network for Th17 Cell Specification , 2012, Cell.

[18]  Ernest Fraenkel,et al.  Foxp3 occupancy and regulation of key target genes during T-cell stimulation , 2007, Nature.

[19]  D. Koller,et al.  The Immunological Genome Project: networks of gene expression in immune cells , 2008, Nature Immunology.

[20]  J. Ortonne,et al.  Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. , 2012, The New England journal of medicine.

[21]  R. Shamir,et al.  Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. , 2008, Genome research.

[22]  T. Mcclanahan,et al.  The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo , 2009, Nature Immunology.

[23]  H. Weiner,et al.  Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells , 2006, Nature.

[24]  Michael M. Ward,et al.  Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci , 2010, Nature Genetics.

[25]  B. Lim,et al.  Retinoic Acid Increases Foxp3+ Regulatory T Cells and Inhibits Development of Th17 Cells by Enhancing TGF-β-Driven Smad3 Signaling and Inhibiting IL-6 and IL-23 Receptor Expression1 , 2008, The Journal of Immunology.

[26]  A. Regev,et al.  Induction and molecular signature of pathogenic T[subscript H]17 cells , 2012 .

[27]  Michael Q. Zhang,et al.  TRED: a transcriptional regulatory element database, new entries and other development , 2007, Nucleic Acids Res..

[28]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[29]  Thomas Korn,et al.  IL-17 and Th17 Cells. , 2009, Annual review of immunology.

[30]  Yuelei Shen,et al.  TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function , 2008, Nature.

[31]  S. Batzoglou,et al.  Genome-Wide Analysis of Transcription Factor Binding Sites Based on ChIP-Seq Data , 2008, Nature Methods.

[32]  T. Mcclanahan,et al.  IL-23 drives a pathogenic T cell population that induces autoimmune inflammation , 2005, The Journal of experimental medicine.

[33]  Subhashis Banerjee,et al.  Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. , 2012, The New England journal of medicine.

[34]  Qing Yang,et al.  ITFP: an integrated platform of mammalian transcription factors , 2008, Bioinform..

[35]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. O’Shea,et al.  Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5 , 2011, Nature Immunology.

[37]  Avi Ma'ayan,et al.  ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments , 2010, Bioinform..

[38]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[39]  Wilfred W. Li,et al.  MEME: discovering and analyzing DNA and protein sequence motifs , 2006, Nucleic Acids Res..

[40]  Dan R. Littman,et al.  Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity , 2011, Nature.

[41]  A. Rudensky,et al.  Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells , 2007, Nature.

[42]  Pui-Yan Kwok,et al.  Genome-wide scan reveals association of psoriasis with IL-23 and NFB pathways , 2016 .

[43]  Judy H. Cho,et al.  The genetics and immunopathogenesis of inflammatory bowel disease , 2008, Nature Reviews Immunology.

[44]  D. Littman,et al.  The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. , 2006, Cell.

[45]  S. Eyre,et al.  Polymorphisms in the IL-12beta and IL-23R genes are associated with psoriasis of early onset in a UK cohort. , 2008, The Journal of investigative dermatology.

[46]  D. Mennerich,et al.  Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human , 2011, Nucleic acids research.

[47]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[48]  Dušica Vidović,et al.  Suppression of TH17 Differentiation and Autoimmunity by a Synthetic ROR Ligand , 2011, Nature.

[49]  Yuka Kanno,et al.  Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. , 2009, Immunity.

[50]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[51]  Mark S. Sundrud,et al.  Pharmacologic Inhibition of RORγt Regulates Th17 Signature Gene Expression and Suppresses Cutaneous Inflammation In Vivo , 2014, The Journal of Immunology.

[52]  Graham M. Lord,et al.  T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements , 2012, Nature Communications.

[53]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..