L2-orthogonal projections onto finite elements on locally refined meshes are H1-stable

We merge and extend recent results which prove the H1-stability of the L2-orthogonal projection onto standard finite element spaces, provided that the underlying simplicial triangulation is appropriately graded. For lowest-order Courant finite elements S1(T) in Rd with d>=2, we prove that such a grading is always ensured for adaptive meshes generated by newest vertex bisection. For higher-order finite elements Sp(T) with p>=1, we extend existing bounds on the polynomial degree with a computer-assisted proof. We also consider L2-orthogonal projections onto certain subspaces of Sp(T) which incorporate zero Dirichlet boundary conditions resp. an integral mean zero property.

[1]  Olaf Steinbach,et al.  On the stability of the $L_2$ projection in fractional Sobolev spaces , 2001, Numerische Mathematik.

[2]  Olaf Steinbach,et al.  On a generalized $L_2$ projection and some related stability estimates in Sobolev spaces , 2002, Numerische Mathematik.

[3]  Michael Feischl,et al.  Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd , 2013 .

[4]  Michael Karkulik,et al.  No . 10 / 2012 On 2 D newest vertex bisection : Optimality of mesh-closure and H 1-stability of L 2-projection , 2012 .

[5]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[6]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[7]  Michael Karkulik,et al.  Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method , 2013, SIAM J. Numer. Anal..

[8]  Michael Karkulik,et al.  On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H1-Stability of L2-Projection , 2013 .

[9]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[10]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[11]  Randolph E. Bank,et al.  On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.

[12]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .

[13]  Carsten Carstensen,et al.  Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces , 2002, Math. Comput..

[14]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[15]  C. T. Traxler,et al.  An algorithm for adaptive mesh refinement inn dimensions , 1997, Computing.